Advertisement

Inducing flocculation of non-floc-forming Escherichia coli cells

  • Yoshihiro Ojima
  • Masayuki Azuma
  • Masahito Taya
Review
  • 49 Downloads

Abstract

The present article reviews several approaches for inducing flocculation of Escherichia coli cells. The common industrially used bacterium E. coli does not naturally have floc-forming ability. However, there are several approaches to induce flocculation of E. coli cells. One is induction by flocculants—polyvalent inorganic salts, synthetic polymeric flocculants, or bio-based polymeric materials, including polysaccharide derivatives. Another method is the induction of spontaneous flocculation by changing the phenotypes of E. coli cells; several studies have shown that physical treatment or gene modification can endow E. coli cells with floc-forming ability. Coculturing E. coli with other microbes is another approach to induce E. coli flocculation. These approaches have particular advantages and disadvantages, and remain open to clarification of the flocculation mechanisms and improvement of the induction processes. In this review, several approaches to the induction of E. coli flocculation are summarized and discussed. This review will be a useful guide for the future development of methods for the flocculation of non-floc-forming microorganisms.

Keywords

Escherichia coli Microbial flocculation Non-floc-forming bacteria Flocculants 

Notes

Acknowledgements

The author (Y.O.) acknowledges financial support from a Grant-in-Aid for Young Scientists (B) (No. 17K14869) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Chemical Innovation Encouragement Prize from the Japan Association for Chemical Innovation. A draft of this manuscript was proofed by James Allen, D. Phil, from Edanz Group (http://www.edanzediting.com/ac).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agerkvist I, Eriksson L, Enfors SO (1990) Selective flocculation with chitosan in Escherichia coli disintegrates: effects of pH and nuclease treatment. Enzym Microb Technol 12(8):584–590CrossRefGoogle Scholar
  2. Avnimelech Y (2015) Biofloc technology—a practical guidebook, 3rd edn. The World Aquaculture Society, Baton RougeGoogle Scholar
  3. Barany S, Szepesszentgyorgyi A (2004) Flocculation of cellular suspensions by polyelectrolytes. Adv Colloid Interface Sci 111(1–2):117–129CrossRefPubMedGoogle Scholar
  4. Bulson PC, Johnstone DL, Gibbons HL, Funk WH (1984) Removal and inactivation of bacteria during alum treatment of a lake. Appl Environ Microbiol 48(2):425–430PubMedPubMedCentralGoogle Scholar
  5. Chen A, Shi Q, Feng J, Ouyang Y, Chen Y, Tan S (2010) Dissociation of outer membrane for Escherichia coli cell caused by cerium nitrate. J Rare Earth 28(2):312–315CrossRefGoogle Scholar
  6. Ekmekci H, Aslim B, Ozturk S (2009) Characterization of vaginal lactobacilli coaggregation ability with Escherichia coli. Microbiol Immunol 53(2):59–65CrossRefPubMedGoogle Scholar
  7. El-Naggar ME, Samhan FA, Salama AAA, Hamdy RM, Ali GH (2018) Cationic starch: safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth. Int J Biol Macromol 116:1296–1303CrossRefPubMedGoogle Scholar
  8. Goochee CF, Hatch RT, Cadman TW (1987) Some observations on the role of type 1 fimbriae in Escherichia coli autoflocculation. Biotechnol Bioeng 29(8):1024–1034CrossRefPubMedGoogle Scholar
  9. Huang M, Wang Y, Cai J, Bai J, Yang H, Li A (2016) Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water. Water Res 98:128–137CrossRefPubMedGoogle Scholar
  10. Kumar A, Mortensen P, Mukherjee P, Retterer T, Dokytcz M (2011) Electric field induced bacterial flocculation of enteroaggregative Escherichia coli 042. Appl Phys Lett 98(25):253701CrossRefGoogle Scholar
  11. Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH, Kim KP, Gho YS (2007) Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7(17):3143–3153CrossRefPubMedGoogle Scholar
  12. Liu T, Yamashita Y, Fukumoto T, Tachibana T, Azuma M (2017a) Flocculation of real sewage sludge using polyglutamic acid produced by Bacillus sp. isolated from soil. J Chem Eng Jpn 50(3):201–206CrossRefGoogle Scholar
  13. Liu Z, Huang M, Li A, Yang H (2017b) Flocculation and antimicrobial properties of a cationized starch. Water Res 119:57–66CrossRefPubMedGoogle Scholar
  14. Liu T, Nobeshima H, Ojima Y, Azuma M (2018) A new method to purify poly-γ-glutamic acid using gemini quaternary ammonium salts and characterization of its ionic complex. J Chem Eng Jpn 51(5):431–437CrossRefGoogle Scholar
  15. Mashburn-Warren L, McLean RJ, Whiteley M (2008) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6(3):214–219CrossRefPubMedPubMedCentralGoogle Scholar
  16. Morimura S, Ling ZY, Kida K (1997) Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance. J Ferment Bioeng 83(3):271–274CrossRefGoogle Scholar
  17. Nakamura J, Miyashiro S, Hirose Y (1976) Purification and chemical analysis of microbial cell flocculant produced by Aspergillus sojae AJ 7002. Agric Biol Chem 40(3):619–624Google Scholar
  18. Nataro JP, Baldini MM, Kaper JB, Black RE, Bravo N, Levine MM (1985) Detection of an adherence factor of enteropathogenic Escherichia coli with a DNA Probe. J Infect Dis 152(3):560–565CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ojima Y, Nguyen MH, Yajima R, Taya M (2015) Flocculation of Escherichia coli cells in association with enhanced production of outer membrane vesicles. Appl Environ Microbiol 81(17):5900–5906CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ojima Y, Takeda S, Taya M (2016) Floc formation of ethnaol producing Escherichia coli KO11 cells and its application to repeated batch operation. J Chem Eng Jpn 49(8):793–798CrossRefGoogle Scholar
  21. Ojima Y, Nunogami S, Azuma M, Taya M (2018) Displaying a recombinant protein on flocs self-produced by Escherichia coli through fused expression with elongation factor Ts. Enzym Microb Technol 108:21–25CrossRefGoogle Scholar
  22. Peng X, Iserentant D, Verachtert H (1997) Effect of cultivation conditions on the yeast-induced flocculation of Escherichia coli. Food Technol Biotechnol 35(4):243–247Google Scholar
  23. Peng X, Sun J, Iserentant D, Michiels C, Verachtert H (2001a) Flocculation and coflocculation of bacteria by yeasts. Appl Microbiol Biotechnol 55(6):777–781CrossRefPubMedGoogle Scholar
  24. Peng X, Sun J, Michiels C, Iserentant D, Verachtert H (2001b) Coflocculation of Escherichia coli and Schizosaccharomyces pombe. Appl Microbiol Biotechnol 57(1–2):175–181PubMedGoogle Scholar
  25. Rehn G, Grey C, Branneby C, Adlercreutz P (2013) Chitosan flocculation: an effective method for immobilization of E. coli for biocatalytic processes. J Biotechnol 165(2):138–144CrossRefPubMedGoogle Scholar
  26. Rubin AJ, Hanna GP (1968) Coagulation of the bacterium Escherichia coli by aluminum nitrate. Environ Sci Technol 2(5):358–362CrossRefGoogle Scholar
  27. Salehizadeh H, Shojaosadati SA (2001) Extracellular biopolymeric flocculants. Recent trends and biotechnological importance. Biotechnol Adv 19(5):371–385CrossRefPubMedGoogle Scholar
  28. Salehizadeh H, Yan N (2014) Recent advances in extracellular biopolymer flocculants. Biotechnol Adv 32(8):1506–1522CrossRefPubMedGoogle Scholar
  29. Schwechheimer C, Kuehn MJ (2013) Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J Bacteriol 195(18):4161–4173CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguenec C, Gounon P, Phillips A, Nataro JP (2002) A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 110(9):1329–1337CrossRefPubMedPubMedCentralGoogle Scholar
  31. Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110(1):1–18CrossRefGoogle Scholar
  32. Tago Y, Aida K (1977) Exocellular mucopolysaccharide closely related to bacterial floc formation. Appl Environ Microbiol 34(3):308–314PubMedPubMedCentralGoogle Scholar
  33. Tang S, Ma Y, Sebastine IM (2001) The fractal nature of Escherichia coli biological flocs. Colloids Surf B 20(3):211–218CrossRefGoogle Scholar
  34. Treweek GP, Morgan JJ (1977) The mechanism of E. coli aggregation by polyethyleneimine. J Colloid Interface Sci 60(2):258–273CrossRefGoogle Scholar
  35. Yang Z, Degorce-Dumas JR, Yang H, Guibal E, Li A, Cheng R (2014) Flocculation of Escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant. Environ Sci Technol 48(12):6867–6873CrossRefPubMedGoogle Scholar
  36. Yin H, Liu L, Wang X, Wang T, Zhou Y, Liu B, Shan Y, Wang L, Lü X (2018) A novel flocculant prepared by lignin nanoparticles-gelatin complex from switchgrass for the capture of Staphylococcus aureus and Escherichia coli. Colloids Surf A 545:51–59CrossRefGoogle Scholar
  37. Zhang Y, Sun V, Spremulli LL (1997) Role of domains in Escherichia coli and mammalian mitochondrial elongation factor Ts in the interaction with elongation factor Tu. J Biol Chem 272(35):21956–21963CrossRefPubMedGoogle Scholar
  38. Zhang Y, Riley LK, Lin M, Hu Z (2010) Lanthanum-based concentration and microrespirometric detection of microbes in water. Water Res 44(11):3385–3392CrossRefPubMedGoogle Scholar
  39. Zou S-P, Huang J-W, Xue Y-P, Zheng Y-G (2018) Highly efficient production of 1-cyanocyclohexaneacetic acid by cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring nitrilase gene. Process Biochem 65:93–99CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yoshihiro Ojima
    • 1
  • Masayuki Azuma
    • 1
  • Masahito Taya
    • 2
  1. 1.Department of Applied Chemistry and Bioengineering, Graduate School of EngineeringOsaka City UniversityOsakaJapan
  2. 2.Division of Chemical Engineering, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations