Advertisement

A transcriptome analysis of the ameliorate effect of Cyclocarya paliurus triterpenoids on ethanol stress in Saccharomyces cerevisiae

  • Yuhui Chen
  • Xin Zhang
  • Man Zhang
  • Jieyu Zhu
  • Zufang Wu
  • Xiaojie Zheng
Original Paper

Abstract

Saccharomyces cerevisiae (S. cerevisiae) plays a critical role in ethanol fermentation. However, during the fermentation, yeast cells are exposed to the accumulation of ethanol, which significantly affect the cell growth and the target product yield. In the present work, we employed RNA-sequence (RNA-seq) to investigate the ameliorate effect of Cyclocarya paliurus (C. paliurus) triterpenoids on S. cerevisiae under the ethanol stress. After C. paliurus triterpenoids intervention (0.3% v/v), 84 differentially expressed genes (DEGs) were identified, including 39 up-regulated and 45 down-regulated genes. The addition of triterpenoids decreased the filamentous and invasive growth of cells, and benefit to the redox balance and glycolysis. This study offers a global view through transcriptome analysis to understand the molecular response to ethanol in Sc131 by the treatment of C. paliurus triterpenoids, which may be helpful to enhance ethanol tolerance of S. cerevisiae in the fermentation of Chinese fruit wine.

Graphical abstract

Keywords

Transcriptome Saccharomyces cerevisiae Ethanol stress Cyclocarya paliurus Triterpenoids 

Notes

Acknowledgements

This work was sponsored by Key Research and Development Project of Zhejiang Province (2017C02039 and 2018C02047), People-benefit Project of Ningbo (2015C10061) and K.C. Wong Magna Fund in Ningbo University.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

11274_2018_2561_MOESM1_ESM.jpg (1.3 mb)
Figure S1. GO analysis of DEGs between the ethanol and the control group. (JPG 1306 KB)
11274_2018_2561_MOESM2_ESM.xlsx (139 kb)
Table S1. DEGs between the ethanol and the control group. (XLSX 138 KB)
11274_2018_2561_MOESM3_ESM.xlsx (146 kb)
Table S2. DEGs between the ethanol-CPT and the ethanol group. (XLSX 146 KB)
11274_2018_2561_MOESM4_ESM.xlsx (17 kb)
Table S3. GO analysis of DEGs between the ethanol and the control group. (XLSX 16 KB)
11274_2018_2561_MOESM5_ESM.xlsx (16 kb)
Table S4. GO analysis of DEGs between the ethanol-CPT and the ethanol group. (XLSX 16 KB)
11274_2018_2561_MOESM6_ESM.xlsx (13 kb)
Table S5. KEGG analysis of DEGs between the ethanol and the control group. (XLSX 13 KB)
11274_2018_2561_MOESM7_ESM.xlsx (13 kb)
Table S6. KEGG analysis of DEGs between the ethanol-CPT and the ethanol group. (XLSX 13 KB)

References

  1. Abdel-Zaher AO, Abdel-Hady RH, Mahmoud MM, Farrag MM (2008) The potential protective role of alpha-lipoic acid against acetaminophen-induced hepatic and renal damage. Toxicology 243:261–270CrossRefGoogle Scholar
  2. Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42CrossRefGoogle Scholar
  3. Alqahtani A, Hamid K, Kam A, Wong KH, Abdelhak Z, Razmovski-Naumovski V, Chan K, Li KM, Groundwater PW, Li GQ (2013) The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem 20:908–931Google Scholar
  4. Auesukaree C (2017) Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng 124:133–142CrossRefGoogle Scholar
  5. Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S (2012) Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. N Biotechnol 29:379–386CrossRefGoogle Scholar
  6. Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53–65CrossRefGoogle Scholar
  7. Chen YJ, Na L, Fan J, Zhao J, Hussain N, Jian YQ, Yuan H, Li B, Liu B, Choudhary MI, Khan I, Wang W (2018) Seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus. Phytochemistry 145:85–92CrossRefGoogle Scholar
  8. Cheng Y, Du Z, Zhu H, Guo X, He X (2016) Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Sci Rep 6:31311CrossRefGoogle Scholar
  9. Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquiémoreno MR, Thevelein JM (2013) Combining inhibitor tolerance and d-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6:120CrossRefGoogle Scholar
  10. Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263CrossRefGoogle Scholar
  11. Doğan A, Demi̇rci̇ S, Ayteki̇n A, Şahi̇n F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174:28–42CrossRefGoogle Scholar
  12. Du X, Takagi H (2007) N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75:1343–1351CrossRefGoogle Scholar
  13. Ghosh J, Sil PC (2013) Arjunolic acid: a new multifunctional therapeutic promise of alternative medicine. Biochimie 95:1098–1109CrossRefGoogle Scholar
  14. Herrero E, Ros J, Bellí G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235CrossRefGoogle Scholar
  15. Hirasawa T, Furusawa C, Shimizu H (2010) Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology? Appl Microbiol Biotechnol 87:391–400CrossRefGoogle Scholar
  16. Hou J, Lages NF, Oldiges M, Vemuri GN (2009) Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng 11:253–261CrossRefGoogle Scholar
  17. Iinoya K, Kotani T, Sasano Y, Takagi H (2009) Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol Bioeng 103:341–352CrossRefGoogle Scholar
  18. Inoue T, Wang Y, Jefferies K, Qi J, Hinton A, Forgac M (2005) Structure and regulation of the V-ATPases. J Bioenerg Biomembr 37:393–398CrossRefGoogle Scholar
  19. Islam MM, Hoque MA, Okuma E, Banu MN, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597CrossRefGoogle Scholar
  20. Kanshin E, Kubiniok P, Thattikota Y, D’Amours D, Thibault P (2015) Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress. Mol Syst Biol 11:813CrossRefGoogle Scholar
  21. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256CrossRefGoogle Scholar
  22. Köhrer K, Domdey H (1991) Preparation of high molecular weight RNA. Methods Enzymol 194:398–405CrossRefGoogle Scholar
  23. Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346:71–75CrossRefGoogle Scholar
  24. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291CrossRefGoogle Scholar
  25. Li RY, Xiong GT, Yuan SK, Wu ZF, Miao YJ, Weng PF (2017) Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. World J Microbiol Biotechnol 33:206CrossRefGoogle Scholar
  26. Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845CrossRefGoogle Scholar
  27. Ma M, Han P, Zhang R, Li H (2013) Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress. Can J Microbiol 59:589–597CrossRefGoogle Scholar
  28. Ma Y, Jiang C, Yao N, Li Y, Wang Q, Fang S, Shang X, Zhao M, Che C, Ni Y, Zhang J, Yin Z (2015) Antihyperlipidemic effect of Cyclocarya paliurus (batal.) iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice. J Ethnopharmacol 166:286–296CrossRefGoogle Scholar
  29. Manners DJ, Masson AJ, Patterson JC, Björndal H, Lindberg B (1973) The structure of a β-(1→6)-d-glucan from yeast cell walls. Biochem J 135:31–36CrossRefGoogle Scholar
  30. Martín C, Thomsen MH, Hauggaard-Nielsen H, Belindathomsen A (2008) Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Bioresour Technol 99:8777–8782CrossRefGoogle Scholar
  31. Mourier A, Larsson N (2011) Tracing the trail of protons through complex I of the mitochondrial respiratory chain. PLos Biol 9:e1001129CrossRefGoogle Scholar
  32. Müller CA, Hawkins M, Retkute R, Malla S, Wilson R, Blythe MJ, Nakato R, Komata M, Shirahige K, de Moura AP, Nieduszynski CA (2014) The dynamics of genome replication using deep sequencing. Nucleic Acids Res 42:e3CrossRefGoogle Scholar
  33. Ohta E, Nakayama Y, Mukai Y, Bamba T, Fukusaki E (2016) Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 121:399–405CrossRefGoogle Scholar
  34. Rosa MF, Sá-Correia I (1996) Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol Lett 135:271–274CrossRefGoogle Scholar
  35. Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352CrossRefGoogle Scholar
  36. Semkiv MV, Dmytruk KV, Abbas CA, Sibirny AA (2014) Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase. BMC Biotechnol 14:42CrossRefGoogle Scholar
  37. Shang XL, Wu ZF, Yin ZQ, Zhang J, Liu ZJ, Fang SZ (2015) Simultaneous determination of flavonoids and triterpenoids in Cyclocarya paliurus leaves using high-performance liquid chromatography. Afr J Tradit Complem 12:125–134CrossRefGoogle Scholar
  38. Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18CrossRefGoogle Scholar
  39. Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M (2015) The return of metabolism biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963CrossRefGoogle Scholar
  40. Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223CrossRefGoogle Scholar
  41. Takagi H, Taguchi J, Kaino T (2016) Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast 33:355–363CrossRefGoogle Scholar
  42. Takahashi T, Shimoi H, Ito K (2001) Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol Genet Genomics 265:1112–1119CrossRefGoogle Scholar
  43. Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772CrossRefGoogle Scholar
  44. Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99CrossRefGoogle Scholar
  45. Udom N, Auesukaree C (2010) The role of the MAPK pathways in response to ethanol stress in Saccharomyces cerevisiae. In: The 2nd RMUTP international conference, pp 333–337Google Scholar
  46. Williams KM, Liu P, Fay JC (2015) Evolution of ecological dominance of yeast species in high-sugar environments. Evolution 69:2079–2093CrossRefGoogle Scholar
  47. Wu Y, Li YY, Wu X, Gao ZZ, Liu C, Zhu M, Song Y, Wang DY, Liu JG, Hu, YL (2014) Chemical constituents from Cyclocarya paliurus, (Batal.) Iljinsk. Biochem Syst Ecol 57:216–220CrossRefGoogle Scholar
  48. Wu Z, Gao T, Zhong R, Lin Z, Jiang C, Ouyang S, Zhao M, Che C, Zhang J, Yin Z (2017a) Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats. Pharm Biol 55:712–721CrossRefGoogle Scholar
  49. Wu Z, Meng F, Cao L, Jiang CH, Zhao MG, Shang XL, Fang SZ, Ye WC, Zhang QW, Zhang J, Yin ZQ (2017b) Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells. Phytochemistry 142:76–84CrossRefGoogle Scholar
  50. You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503CrossRefGoogle Scholar
  51. Zhang Q, Zhao H, Zhang G, He K, Yang Z, Jin Y (2012) Transcriptome analysis of Saccharomyces cerevisiae at the late stage of very high gravity (VHG) fermentation. Afr J Biotechnol 11:9641–9648CrossRefGoogle Scholar
  52. Zhang K, Tong M, Gao K, Di Y, Wang P, Zhang C, Wu X, Zheng D (2015) Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 42:207–218CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Food Science and Engineering, School of Marine SciencesNingbo UniversityNingboPeople’s Republic of China
  2. 2.Department of Food ScienceRutgers UniversityNew BrunswickUSA
  3. 3.Department of Agriculture and BiotechnologyWenzhou Vocational College of Science and TechnologyWenzhouPeople’s Republic of China

Personalised recommendations