Advertisement

Recent insights into the microbial catabolism of aryloxyphenoxy-propionate herbicides: microbial resources, metabolic pathways and catabolic enzymes

  • Jie Zhou
  • Kuan Liu
  • Fengxue Xin
  • Jiangfeng Ma
  • Ning Xu
  • Wenming Zhang
  • Yan Fang
  • Min Jiang
  • Weiliang Dong
Review

Abstract

Aryloxyphenoxy-propionate herbicides (AOPPs) are widely used to control annual and perennial grasses in broadleaf crop fields and are frequently detected as contaminants in the environment. Due to the serious environmental toxicity of AOPPs, there is considerable concern regarding their biodegradation and environmental behaviors. Microbial catabolism is considered as the most effective method for the degradation of AOPPs in the environment. This review presents an overview of the recent findings on the microbial catabolism of various AOPPs, including fluazifop-P-butyl, cyhalofop-butyl, diclofop-methyl, fenoxaprop-P-ethyl, metamifop, haloxyfop-P-methyl and quizalofop-P-ethyl. It highlights the microbial resources that are able to catabolize these AOPPs and the metabolic pathways and catabolic enzymes involved in their degradation and mineralization. Furthermore, the application of AOPPs-degrading strains to eliminate AOPPs-contaminated environments and future research hotspots in biodegradation of AOPPs by microorganisms are also discussed.

Keywords

Aryloxyphenoxy-propionates Biodegradation Microbial resource Degradation pathway Catabolic enzyme 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31700092, 21727818, 21390200, 21706125, 21706124), the Jiangsu Province Natural Science Foundation for Youth (Nos. BK20170997, BK20170993), the Key Science and Technology Project of Jiangsu Province (No. BE2016389), the Project of State Key Laboratory of Materials Oriented Chemical Engineering (KL17-09), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1834), and the China Postdoctoral Innovative Talents Support Program (BX20180140).

References

  1. Ahmad Hamdani MS, Powles SB (2013) Herbicide resistance endowed by enhanced rates of herbicide metabolism in wild oat (Avena spp.). Weed Sci 61:55–62CrossRefGoogle Scholar
  2. Aksoy O, Dane F, Ekinci SF, Aktac F (2007) The effects of fusilade (fluazifop-P-butyl) on germination, mitotic frequency and α-amylase activity of lentil (Lens culinaris Medik.) seeds. Acta Physiol Plant 29:115–120CrossRefGoogle Scholar
  3. Cai XY, Liu WP, Sheng GY (2008) Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures. J Agric Food Chem 56:2139–2146CrossRefPubMedGoogle Scholar
  4. Chiapusio G, Pellissier F, Gallet C (2004) Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. J Exp Bot 55:1587–1592CrossRefPubMedGoogle Scholar
  5. Donald WW, Shimabukuro RH (1980) Selectivity of diclofop-methyl between wheat and wild oat: growth and herbicide metabolism. Physiol Plant 49:459–464CrossRefGoogle Scholar
  6. Dong W, Hou Y, Xi X et al (2015a) Biodegradation of fenoxaprop-ethyl by an enriched consortium and its proposed metabolic pathway. Int Biodeterior Biodegrad 97:159–167CrossRefGoogle Scholar
  7. Dong W, Jiang S, Shi K et al (2015b) Biodegradation of fenoxaprop-P-ethyl (FE) by Acinetobacter sp. strain DL-2 and cloning of FE hydrolase gene afeH. Bioresour Technol 186:114–121CrossRefPubMedGoogle Scholar
  8. Dong W, Wang F, Huang F et al (2016) Metabolic pathway involved in 6-chloro-2-benzoxazolinone degradation by Pigmentiphaga sp. strain DL-8 and identification of the novel metal-dependent hydrolase CbaA. Appl Environ Microbiol 82(14):4169–4179CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dong W, Liu K, Wang F et al (2017) The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure. Biodegradation 28:181–194CrossRefPubMedGoogle Scholar
  10. European Food Safety Authority (2012) Conclusion on the peer review of the pesticide risk assessment of the active substance fluazifop-P (evaluated variant fluazifop-P-butyl). EFSA J 10(11):2945CrossRefGoogle Scholar
  11. Grenier LS, Adkins A (1995) Degradation of diclofop-methylby pure cultures of bacteria isolated from Manitoban soils. Can J Microbiol 42:227–233CrossRefGoogle Scholar
  12. Grube DD, Kiely T, Wu L (2011) Pesticide industry sales and usage: 2006 and 2007 market estimates. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  13. Hoagland RE, Zablotowicz RM (1998) Biotransformations of fenoxaprop-ethyl by fluorescent Pseudomonas strains. J Agric Food Chem 46(11):4759–4765CrossRefGoogle Scholar
  14. Hou Y (2011) Aryloxy phenoxy propionic acid and acetyl chloride herbicide degrading bacteria isolated identification, gene cloning, expression and degradation metabolic pathways study. Nanjing Agricultural University, NanjingGoogle Scholar
  15. Hou Y, Tao J, Shen W et al (2011) Isolation of the fenoxaprop-ethyl (FE)-degrading bacterium Rhodococcus sp. T1, and cloning of FE hydrolase gene feh. FEMS Microbiol Lett 323(2):196–203CrossRefPubMedGoogle Scholar
  16. Hussain S, Arshad M, Springael D et al (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol 45(18):1947–1998CrossRefGoogle Scholar
  17. Ioannis SE, George DL, Dimitris S, Antonios M (2007) Case report: mixed cholestatic/hepatocellular liver injury induced by the herbicide quizalofop-P-ethyl. Environ Health Perspect 115:1479–1481Google Scholar
  18. Jing X, Yao GJ, Liu DH, Liu C, Wang F, Wang P, Zhou ZQ (2017) Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl. Chemosphere 186:832–838CrossRefPubMedGoogle Scholar
  19. Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230CrossRefPubMedGoogle Scholar
  20. Lin J, Chen JW, Wang Y, Cai XY, Wei XX, Qiao XL (2008) More toxic and photoresistant products from photodegradation of fenoxaprop-p-ethyl. J Agric Food Chem 56:8226–8230CrossRefPubMedGoogle Scholar
  21. Liu H, Xu L, Ge Z et al (2015) Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene (feh). Braz J Microbiol 2(46):425–432Google Scholar
  22. Lucini L, Molinari GP (2011) Detection of the herbicide fenoxaprop-P-ethyl, its agronomic safener isoxadifen ethyl and their metabolites residue in rice. Qual Assur Saf Crop 3:63–68CrossRefGoogle Scholar
  23. Luks AK, Christiaan W, Burkhard S (2016) Metabolism of the 14C-labeled herbicide clodinafop-propargyl in plant cell cultures of wheat and tobacco. J Environ Sci Health B 51:71–80CrossRefPubMedGoogle Scholar
  24. Metwally IM, Shalby EM (2007) Bio-remedaition of fluazifop-p-butyl herbicide contaminated soil with special reference to efficacy of some weed control treatments in faba bean plants. Res J Agric Biol Sci 7:11–19Google Scholar
  25. Nie ZJ, Hang BJ, Cai S et al (2011) Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1 and cloning of a novel gene encoding CyB-hydrolyzing esterase. J Agric Food Chem 59:6040–6046CrossRefPubMedGoogle Scholar
  26. Nora B, Annette ER, Preben O, Sebastian RS (2015) Environmental fate of the herbicide fluazifop-P-butyl and its degradation products in two loamy agricultural soils-a combined laboratory and field study. Environ Sci Technol 49(15):8995–9003CrossRefGoogle Scholar
  27. Qiu L, Ma CL, Liu BL, Zhang WG (2012) Current situation of research on transgenic crops with herbicide tolerance and development prospect. Sci Agric Sin 45:2357–2363Google Scholar
  28. Robert EH, Robert MZ (1998) Biotransformations of fenoxaprop-ethyl by Pseudomonas fluorescent strain. J Agric Food Chem 46:4759–4765CrossRefGoogle Scholar
  29. Singh SB, Das TK, Kulshrestha G (2013) Persistence of herbicide fenoxaprop ethyl and its acid metabolite in soil and wheat crop under Indian tropical conditions. J Environ Sci Health B 48(5):324–330CrossRefPubMedGoogle Scholar
  30. Song LY, Hua RM, Zhao YC (2005a) Biodegradation of fenoxaprop-P-ethyl by bacteria isolated from sludge. J Hazard Mater 118(1):247–251CrossRefPubMedGoogle Scholar
  31. Song L, Zhao Y, Hua R (2005b) Separation of fenoxaprop-P-ethyl biodegradation products by HPTLC. J Planar Chromatogr 18(1):85–88CrossRefGoogle Scholar
  32. Wang C, Qiu J, Yang Y et al (2017) Identification and characterization of a novel carboxylesterase (FpbH) that hydrolyzes aryloxyphenoxypropionate herbicides. Biotechnol Lett 39(4):553–560CrossRefPubMedGoogle Scholar
  33. Wink O, Luley U (1988) Enantioselective transformation of the herbicides diclofop- methyl and fenoxaprop-ethyl in soil. J Pest Sci 22:31–40CrossRefGoogle Scholar
  34. Wu JF, Sun CW, Jiang CY et al (2005) A novel 2-aminophenol 1, 6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli. Arch Microbiol L 183(1):1–8CrossRefGoogle Scholar
  35. Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72:1759–1765CrossRefPubMedPubMedCentralGoogle Scholar
  36. Xi X, Dong W, Zhang J et al (2013) Taonella mepensis gen. nov., sp. nov., a member of the family Rhodospirillaceae isolated from activated sludge. Int J Syst Evol Microbiol 63:2472–2476CrossRefPubMedGoogle Scholar
  37. Yin XH, Li SN, Liu SY, Zhu GN, Zhuang HS (2011) Genotoxicity evaluation of low doses of clodinafop-propargyl to the silkworm Bombyx mori using alkaline single-cell gel electrophoresis. Environ Toxicol Pharmacol 26:162–166CrossRefGoogle Scholar
  38. Zhang H, Li M, Li J et al (2016a) A key esterase required for the mineralization of quizalofop-P-ethyl by a natural consortium of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9. J Hazard Mater 327:1–10CrossRefPubMedGoogle Scholar
  39. Zhang H, Li M, Dai C et al (2016b) Characterization of EstQE, a new member of esterase family VIII from the quizalofop-P-ethyl-degrading bacterium Ochrobactrum sp. QE-9. J Mol Catal B 133:167–175CrossRefGoogle Scholar
  40. Zhang H, Li M, Li J et al (2017) Purification and properties of a novel quizalofop-P-ethyl-hydrolyzing esterase involved in quizalofop-P-ethyl degradation by Pseudomonas sp. J-2. Microb Cell Fact 16:80CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhen D, Liu H, Wang SJ et al (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72:797–803CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jie Zhou
    • 1
    • 2
  • Kuan Liu
    • 1
  • Fengxue Xin
    • 1
    • 2
  • Jiangfeng Ma
    • 1
    • 2
  • Ning Xu
    • 1
    • 3
  • Wenming Zhang
    • 1
    • 2
  • Yan Fang
    • 1
    • 2
  • Min Jiang
    • 1
    • 2
  • Weiliang Dong
    • 1
    • 2
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China
  3. 3.Jiangsu Key Laboratory for Biomass-based Energy and Enzyme TechnologyHuaiyin Normal UniversityHuaianPeople’s Republic of China

Personalised recommendations