Biodegradation of chlorpropham and its major products by Bacillus licheniformis NKC-1

  • Namadev K. Pujar
  • H. G. Premakshi
  • Shruti Laad
  • Shridhar V. Pattar
  • Manisha Mirjankar
  • Chandrappa M. KamanavalliEmail author
Original Paper


Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] (CIPC), an important phenyl carbamate herbicide, has been used as a plant growth regulator and potato sprout suppressant (Solanum tuberosum L) during long-term storage. A bacterium capable of utilizing the residual herbicide CIPC as a sole source of carbon and energy was isolated from herbicide-contaminated soil samples employing selective enrichment method. The isolated bacterial strain was identified as Bacillus licheniformis NKC-1 on the basis of its morphological, cultural, biochemical characteristics and also by phylogenetic analysis based on 16S rRNA gene sequences. The organism degraded CIPC through its initial hydrolysis by CIPC hydrolase enzyme to yield 3-chloroaniline (3-CA) as a major metabolic product. An inducible 3-CA dioxygenase not only catalyzes the incorporation of molecular oxygen but also removes the amino group by the deamination yielding a monochlorinated catechol. Further, degradation of 4-chlorocatechol proceeded via ortho- ring cleavage through the maleylacetate process. 3-Chloroaniline and 4-chlorocatechol are the intermediates in the CIPC degradation which suggested that dechlorination had occurred after the aromatic ring cleavage. The presence of these metabolites has been confirmed by using ultra-violet (UV), high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), Fourier transmission-infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and gas chromatography-mass (GC-MS) spectral analysis. Enzyme activities of CIPC hydrolase, 3-CA dioxygenase and chlorocatechol 1, 2-dioxygenase were detected in the cell-free-extract of the CIPC culture and are induced by cells of NKC-1 strain. These results demonstrate the biodegradation pathways of herbicide CIPC and promote the potential use of NKC-1 strain to bioremediate CIPC-contaminated environment with subsequent release of ammonia, chloride ions and carbon dioxide.


Biodegradation Chlorpropham B. licheniformis NKC-1 Sprout suppressant GC-MS spectral analysis 



Authors are thankful to the DST, New Delhi, for providing financial assistance (Grant No. PURSE-Phase-2/3 (G), SR).

Supplementary material

11274_2018_2494_MOESM1_ESM.docx (512 kb)
Supplementary material 1 (DOCX 512 KB)


  1. Aml AE, Moghazy AM, Gouda AEA, Elshatoury RSA (2014) Inhibition of sprout growth and increase storability of processing potato by an anti-sprouting agent. Trends Hort Res 4:31–40CrossRefGoogle Scholar
  2. Angioi S, Polati S, Roz M, Rinaudo C, Gianotti V, Gennaro MC (2005) Sorption studies of chloroanilines on kaolinite and montmorillonite. Environ Pollut 134:35–43CrossRefPubMedGoogle Scholar
  3. Arnow LE (1937) Colorimetric determination of the components of 3,4- dihydroxyphenylalanine- tyrosine mixtures. J Biol Chem 118:531–537Google Scholar
  4. Brunsbach FR, Reineke W (1993) Degradation of chloroanilines in soil slurry by specialized organisms. Appl Microbiol Biotech 40:402–407CrossRefGoogle Scholar
  5. Camara B, Nikodem P, Bielecki P, Bobadilla R, Junca H, Pieper DH (2009) Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1. J Bacteriol 191:4905–4915CrossRefPubMedPubMedCentralGoogle Scholar
  6. Daniels-Lake BJ, Pruski K, Prange RK (2011) Using ethylene gas and chlorpropham potato sprout inhibitors together. Potato Res 54:223–236CrossRefGoogle Scholar
  7. David B, Lhote M, Faure V, Boule P (1998) Ultrasonic and photochemical degradation of chlorpropham and 3-chloroaniline in aqueous solution. Water Res 32:2451–2461CrossRefGoogle Scholar
  8. Duncan DM (1955) Multiple range and multiple tests. Biometrics 42:1–42CrossRefGoogle Scholar
  9. Environmental Protection US, Agency (1987) Pesticide fact sheet number 150: Chlorpropham. US EPA, Office of Pesticide Programs, Registration Div, Washington, DC. DecGoogle Scholar
  10. Farawela J (2009) Microbial degradation of carbamate pesticides. Accessed 17 December 2013
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791CrossRefGoogle Scholar
  12. Fukumori F, Saint CP (1997) Nucleotide sequences and regulational analysis of genes involved in the conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). J Bacteriol 179:399–408CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gamez-Castillo D, Cruz E, Iguaz A, Arroqui C, Virseda P (2013) Effects of essential oils on sprout suppression and quality of potato cultivars. Postharvest Biol Tech 82:15–21CrossRefGoogle Scholar
  14. Greif D, Wesner D, Regtmeier J, Anselmetti D (2010) High-resolution imaging of surface patterns of single bacterial cells. Ultramicroscopy 110:1290–1296CrossRefPubMedGoogle Scholar
  15. Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 9:29–71CrossRefPubMedGoogle Scholar
  16. Hinteregger C, Loidl M, Streichsbier F (1992) Characterization of isofunctional ring-cleaving enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. FEMS Microbiol Lett 76:261–266CrossRefPubMedGoogle Scholar
  17. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, BaltimoreGoogle Scholar
  18. Iwasaki I, Utsumi S, Ozawa T (1952) New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25:226–226CrossRefGoogle Scholar
  19. Kaufman DD, Kearney PC (1965) Microbial degradation of isopropyl N-3-chlorophenyl carbamate and 2-chloroethyl-N-3-chlorophenyl carbamate. Appl Environ Microbiol 13:443–446Google Scholar
  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  21. Latorre J, Reineke W, Knackmuss HJ (1984) Microbial metabolism of chloroanilines: enhanced evolution by the natural genetic exchange. Arch Microbiol 140:159–165CrossRefGoogle Scholar
  22. Loidl M, Hinteregger C, Ditzelmuller G, Ferschl A, Streichsbier F (1990) Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains. Arch Microbiol 155:56–61CrossRefGoogle Scholar
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  24. Mani F, Bettaieb T, Doudech N, Hannachi C (2014) Physiological mechanisms for potato dormancy release and sprouting: a review. Afr Crop Sci J 22:155–174Google Scholar
  25. Marty JL, Khaflf T, Vega D, Bastide J (1986) Degradation of phenyl carbamate herbicides by Pseudomonas alcaligenes isolated from soil. Soil Biol Biochem 18:649–653CrossRefGoogle Scholar
  26. Mohammed NS, Flowers TH, Duncan HJ (2015) HPLC-UV methods for the analysis of potato sprout inhibitor chlorpropham and its metabolite 3-chloroaniline in potatoes. IOSR J Environ Sci Toxicol Food Technol 9:78–85Google Scholar
  27. Nakagawa H, Lockman JC, Frankel WL, Hampel H, Steenblock K, Burgart LJ, Thibodeau SN, Chapelle AD (2004) Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2; protein, but paralogous genes obscure mutation detection and interpretation. Cancer Res 64:4721–4727CrossRefPubMedGoogle Scholar
  28. Narang AS, Choudhury DR, Richards A (1982) Separation of aromatic amines by thin-layer and high-performance liquid chromatography. J Chromatog Sci 20:235–237CrossRefGoogle Scholar
  29. Nikodem P, Hecht V, Schlomann M, Pieper DH (2003) New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 185:6790–6800CrossRefPubMedPubMedCentralGoogle Scholar
  30. Park G, Oh H, Ahn S (2009) Improvement of ammonia analysis by a Phenate method in water and wastewater. Bull Korean Chem Soc 30:2032–2038CrossRefGoogle Scholar
  31. Paul V, Pandey R, Ezekiel R, Kumar D (2014) Potential of glyphosate as a sprout suppressant for potato (Solanum tuberosum L.) tubers during storage. Indian J Plant Physiol 19:293–305CrossRefGoogle Scholar
  32. Pease HL (1962) Herbicide residues, separation and colorimetric determination of monuron and diuron residues. J Agric Food Chem 10:279–281CrossRefGoogle Scholar
  33. Pidiyar VJ, Jangid K, Patole MS, Shouche YS (2004) Studies on the cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16S rRNA gene analysis. Am J Trop Med Hyg 70:597–603PubMedCrossRefGoogle Scholar
  34. Rouillon R, Poulain C, Bastide J, Coste CM (1989) Degradation of the herbicide chlorpropham by some Ectomycorrhizal fungi in pure culture. Agric Ecosyst Environ 28:421–424CrossRefGoogle Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  37. Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Biochem J 192:339–347CrossRefPubMedPubMedCentralGoogle Scholar
  38. Seubert NYW (1960) Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis, new species. J Bacteriol 79:426–434PubMedPubMedCentralGoogle Scholar
  39. Sihtmae M, Mortimer M, Kahru A, Blinova I (2010) Toxicity of five anilines to crustaceans, protozoa, and bacteria. J Serb Chem Soc 75:1291–1302CrossRefGoogle Scholar
  40. Smith MJ, Bucher G (2012) Tools to study the degradation and loss of the N-phenyl carbamate chlorpropham comprehensive review. Environ Int 49:38–50CrossRefPubMedGoogle Scholar
  41. Surovtseva EG, Ivoilov VS, Vasileva GK, Belyaev SS (1996) Degradation of chlorinated anilines by certain representatives of the genera Aquaspirillum and Paracoccus Microbiol 65:553–559Google Scholar
  42. Svehla G (1996) Vogel’s qualitative inorganic analysis, 7th ed., Longman Sc & Tech, HarlowGoogle Scholar
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vaughn KC, Lehnen LP (JR) (1991) Mitotic disrupter herbicides. Weed Sci 39:450–457Google Scholar
  45. Walter WM, Richard WE (1991) Purification and characterization of the N-methylcarbamate hydrolase from Pseudomonas strain CRL-OK. Appl Environ Microbiol 57:3679–3682Google Scholar
  46. Zeyer J, Kearney PC (1982) Microbial degradation of p-chloroaniline as sole carbon and nitrogen source. Pesti Biochem Physiol 17:215–223CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Namadev K. Pujar
    • 1
  • H. G. Premakshi
    • 2
  • Shruti Laad
    • 1
  • Shridhar V. Pattar
    • 1
  • Manisha Mirjankar
    • 1
  • Chandrappa M. Kamanavalli
    • 1
    Email author
  1. 1.P. G. Department of Studies in BiochemistryKarnatak UniversityDharwadIndia
  2. 2.P. G. Department of Studies in ChemistryKarnatak UniversityDharwadIndia

Personalised recommendations