Genetic variability and physiological traits of Saccharomyces cerevisiae strains isolated from “Vale dos Vinhedos” vineyards reflect agricultural practices and history of this Brazilian wet subtropical area

  • Giulia Crosato
  • Milena Carlot
  • Alberto De Iseppi
  • Juliano Garavaglia
  • Laura Massochin Nunes Pinto
  • Denise Righetto Ziegler
  • Renata Cristina de Souza Ramos
  • Rochele Cassanta Rossi
  • Chiara Nadai
  • Alessio GiacominiEmail author
  • Viviana Corich
Original Paper


Vale dos Vinhedos appellation of origin has a very recent history as industrial wine making region. In this study we investigated the genetic and phenotypic variability of Saccharomyces cerevisiae strains isolated from South-Brazilian vineyards in order to evaluate strain fermentation aptitude and copper and sulphites tolerance. Merlot grape bunches were collected from three vineyards and yeast isolation was performed after single bunch fermentation. High genotypic variability was found and most of the genotypes revealed to be vine-specific. No industrial strain dissemination was present in the sampled vineyards, although it has been wildly reported in traditional winemaking countries. From the phenotypic traits analysis these Brazilian native strains showed good fermentation performances, good tolerance to sulphites and, in particular, a high copper tolerance level. Copper is the most important metal in the formulation of fungicides against downy mildew (Plasmopara viticola), one of the most harmful disease of the vines, and other fungal pests. The high tolerance to copper suggests an environmental adaptation to the strong use of copper-based fungicides, requested by the wet subtropical climate.

Graphical Abstract


Native strain Wine yeast MtDNA RFLP analysis Geographical distribution Copper tolerance SO2 tolerance 



Sampling area


Growth decrease due to sulphur dioxide


Growth decrease due to copper sulphate



This study was partially funded by MIUR (Ministero dell’Istruzione dell’Università e della Ricerca, project 60A08-9152/11). The authors gratefully acknowledge Miss Fernanda Herter (ittNUTRIFOR, Unisinos) and Dr Luciano Alves (ittNUTRIFOR, Unisinos) for technical support in performing HPLC analysis and fermentation trials. The winemaking company Vinícola Miolo (Vale dos Vinhedos, Bento Goncalves, RS, Brazil) is acknowledged for providing the vineyards for the sampling campaign.

Supplementary material

11274_2018_2490_MOESM1_ESM.pdf (324 kb)
Supplementary material 1 (PDF 324 KB)


  1. Alves Baffi M, dos Santos Bezerra C, Arévalo-Villena M, Briones-Pérez AI, Gomes E, Da Silva R (2011) Isolation and molecular identification of wine yeasts from a Brazilian vineyard. Ann Microbiol 61(1):75–78. CrossRefGoogle Scholar
  2. Azenha M, Vasconcelos MT, Moradas-Ferreira P (2000) The influence of Cu concentration on ethanolic fermentation by Saccharomyces cerevisiae. J Biosci Bioeng 90(2):163–167. CrossRefPubMedGoogle Scholar
  3. Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96(11):1188–1194. CrossRefPubMedGoogle Scholar
  4. Bokulich NA, Ohta M, Richardson PM, Mills DA (2013) Monitoring seasonal changes in winery-resident microbiota. PLoS ONE 8(6):e66437. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bovo B, Giacomini A, Corich V (2011) Effects of grape marcs acidification treatment on the evolution of indigenous yeast populations during the production of grappa. J Appl Microbiol 111(2):382–388. CrossRefPubMedGoogle Scholar
  6. Bovo B, Nardi T, Fontana F, Carlot M, Giacomini A, Corich V (2012) Acidification of grape marc for alcoholic beverage production: effects on indigenous microflora and aroma profile after distillation. Int J Food Microbiol 152(3):100–106. CrossRefPubMedGoogle Scholar
  7. Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102:151–161. CrossRefGoogle Scholar
  8. Camargo UA, Tonietto J, Hoffmann A (2011) Progressos na viticultura brasileira. Rev Bras Frutic 33(1):144–149CrossRefGoogle Scholar
  9. Capece A, Romaniello R, Siesto G, Pietrafesa R, Massari C, Poeta C, Romano P (2010) Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. Int J Food Microbiol 144:187–192. CrossRefPubMedGoogle Scholar
  10. Cappello M, Bleve G, Grieco F, Dellaglio F, Zacheo G (2004) Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J Appl Microbiol 97:1274–1280. CrossRefPubMedGoogle Scholar
  11. Chavan P, Mane S, Kulkarni G, Shaikh S, Ghormade V, Nerkar DP, Shouche Y, Deshpande MV (2009) Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol 26(8):801–808. CrossRefPubMedGoogle Scholar
  12. COMMISSION REGULATION (EC) No 606/2009 of 10 July 2009 laying down certain detailed rules for implementing Council Regulation (EC) No 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions. Accessed 18 Sept 2017
  13. Cordero-Bueso G, Arroyo T, Serrano A, Valero E (2011) Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol Ecol 77:429–437. CrossRefPubMedGoogle Scholar
  14. da Silva GA, Agustini BC, De Mello LMR, Tonietto J (2016) Autochthonous yeast populations from different Brazilian geographic indications. BIO Web Conf 7:02030. CrossRefGoogle Scholar
  15. De Freitas J, Wintz H, Kim JH, Poynton H, Fox T, Vulpe C (2003) Yeast, a model organism for iron and copper metabolism studies. Biometals 16(1):185–197. CrossRefPubMedGoogle Scholar
  16. Delfini C, Formica JV (2001) Wine microbiology: science and technology. Marcel Dekker, New YorkCrossRefGoogle Scholar
  17. Demuyter C, Lollier M, Legras JL, Le Jeune C (2004) Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation for three consecutive years in an Alsatian winery. J Appl Microbiol 97:1140–1148. CrossRefPubMedGoogle Scholar
  18. Divol B, du Toit M, Duckitt E (2012) Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol 95:601–613. CrossRefPubMedGoogle Scholar
  19. Echeverrigaray S, Randon M, da Silva K, Zacaria J, Longaray Delamare AP (2013) Identification and characterization of non-Saccharomyces spoilage yeasts isolated from Brazilian wines. World J Microbiol Biotechnol 29:1019–1027. CrossRefPubMedGoogle Scholar
  20. European Commission—PLANTS EU Pesticides database—Products to which MRLs apply (Part A of Annex I to Reg. 396/2005). Accessed 18 Sept 2017
  21. Favaro L, Corich V, Giacomini A, Basaglia M, Casella S (2013) Grape marcs as unexplored source of new yeasts for future biotechnological applications. World J Microbiol Biotechnol 29(9):1551–1562. CrossRefGoogle Scholar
  22. Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1(1):e5. CrossRefPubMedCentralGoogle Scholar
  23. Fensterseifer JE (2007) The emerging Brazilian wine industry. Challenges and prospects for the Serra Gaúcha wine cluster. Int J Wine Bus Res 19(3):187–206. CrossRefGoogle Scholar
  24. Fernandes AR, Sá-Correia I (1999) Comparative effects of Saccharomyces cerevisiae cultivation under copper stress on the activity and kinetic parameters of plasma-membrane-bound H+-ATPases PMA1 and PMA2. Arch Microbiol 171:273–278. CrossRefPubMedGoogle Scholar
  25. Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22. CrossRefPubMedGoogle Scholar
  26. Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550. CrossRefPubMedGoogle Scholar
  27. Garofalo C, Tristezza M, Grieco F, Spano G, Capozzi V (2016) From grape berries to wine: population dynamics of cultivable yeasts associated to ‘‘Nero di Troia’’ autochthonous grape cultivar. World J Microbiol Biotechnol 32:59. CrossRefPubMedGoogle Scholar
  28. Gayevskiy V, Goddard MR (2012) Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J 6(7):1281–1290. CrossRefPubMedGoogle Scholar
  29. Henick-Kling T, Edinger W, Daniel P, Monk P (1998) Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J Appl Microbiol 84:865–876. CrossRefGoogle Scholar
  30. Hodgins-Davis A, Adomas AB, Warringer J, Townsend JP (2012) Abundant gene-by-environment interactions in gene expression reaction norms to copper within Saccharomyces cerevisiae. Genome Biol Evol 4(11):1061–1079. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hood A (1983) Inhibition of growth of wine lactic-acid bacteria by acetaldehyde-bound sulphur dioxide. Aust N Z Grapegrow Winemak 232:34–43Google Scholar
  32. Judet‐Correia D, Charpentier C, Bensoussan M, Dantigny P (2011) Modelling the inhibitory effect of copper sulfate on the growth of Penicillium expansum and Botrytis cinerea. Lett Appl Microbiol 53:558–564. CrossRefPubMedGoogle Scholar
  33. Kachalkin AV, Abdullabekova DA, Magomedova ES, Magomedov GG, Chernova IY (2015) Yeasts of the vineyards in Dagestan and other regions. Microbiology 84(3):425–432. CrossRefGoogle Scholar
  34. Legras JL, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol Lett 221(2):249–255. CrossRefPubMedGoogle Scholar
  35. Legras JL, Erny C, Charpentier C (2014) Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome. PLoS ONE 9(10):e108089. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, Sanchez I, Couloux A, Guy J, Franco-Duarte R, Marcet-Houben M, Gabaldon T, Schuller D, Sampaio JP, Dequin S (2018) Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol Biol Evol 35(7):1712–1727. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liang HY, Chen JY, Reeves M, Han BZ (2013) Aromatic and sensorial profiles of young Cabernet Sauvignon wines fermented by different Chinese autochthonous Saccharomyces cerevisiae strains. Food Res Int 51(2):855–865. CrossRefGoogle Scholar
  38. Lopez V, Querol A, Ramon D, Fernandez-Espinar MT (2001) A simplified procedure to analyse mitochondrial DNA from industrial yeasts. Int J Food Microbiol 68:75–81. CrossRefPubMedGoogle Scholar
  39. Martini A, Ciani M, Scorzetti G (1996) Direct enumeration and isolation of wine yeasts from grapes surfaces. Am J Enol Vitic 47:435–440. CrossRefGoogle Scholar
  40. Martiniuk JT, Pacheco B, Russell G, Tong S, Backstrom I, Measday V (2016) Impact of commercial strain use on Saccharomyces cerevisiae population structure and dynamics in pinot noir vineyards and spontaneous fermentations of a Canadian winery. PLoS ONE 11(8):e0160259.,pone.0160259 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mello LMR (2015) Vitivinicultura brasileira: panorama 2014. Comunicado Tecnico. Brasília: Embrapa Uva e Vinho, 1–6. ISSN: 1808-6802.
  42. Mendes-Ferreira A, Barbosa V, Falco C, Leão C, Mendes-Faia A (2009) The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J Ind Microbiol Biotechnol 36:571–583. CrossRefPubMedGoogle Scholar
  43. Mirlean N, Roisenberg A, Chies JO (2007) Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ Pollut 149(1):10–17. CrossRefPubMedGoogle Scholar
  44. Mirlean N, Baisch P, Medeanic S (2009) Copper bioavailability and fractionation in copper-contaminated sandy soils in the wet subtropics (southern Brazil). Bull Environ Contam Toxicol 82(3):373–377. CrossRefPubMedGoogle Scholar
  45. Mortimer R, Polsinelli M (1999) On the origins of wine yeast. Res Microbiol 150:199–204. CrossRefPubMedGoogle Scholar
  46. Nadai C, Treu L, Campanaro S, Giacomini A, Corich V (2016) Different mechanisms of resistance modulate sulfite tolerance in wine yeasts. Appl Microbiol Biotechnol 100(2):797–813. CrossRefPubMedGoogle Scholar
  47. Nadai C, Bovo B, Giacomini A, Corich V (2018) New rapid PCR protocol based on high-resolution melting analysis to identify Saccharomyces cerevisiae and other species within its genus. J Appl Microbiol 124(5):1232–1242. CrossRefPubMedGoogle Scholar
  48. Nardi T, Carlot M, De Bortoli E, Corich V, Giacomini A (2006) A rapid method for differentiating Saccharomyces sensu stricto strains from other yeast species in an enological environment. FEMS Microbiol Lett 264(2):168–173. CrossRefPubMedGoogle Scholar
  49. Nardi T, Corich V, Giacomini A, Blondin B (2010) A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. Microbiology 156:1686–1696. CrossRefPubMedGoogle Scholar
  50. Naumov G, Masneuf IS, Naumova E, Aigle M, Dubourdieu D (2000) Association of Saccharomyces bayanus var. uvarum with some French wines: genetic analysis of yeast populations. Res Microbiol 151(8):683–691. CrossRefPubMedGoogle Scholar
  51. Pérez-Coello MS, Briones Pérez AI, Ubeda Iranzo JF, Martin Alvarez PJ (1999) Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol 16(6):563–573. CrossRefGoogle Scholar
  52. Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729.;2-B.CrossRefPubMedGoogle Scholar
  53. Querol A, Ramon D (1996) The application of molecular techniques in wine microbiology. Trends Food Sci Technol 7(3):73–78. CrossRefGoogle Scholar
  54. Querol A, Barrio E, Ramón D (1992) A comparative study of different methods of yeast strain characterization. Syst Appl Microbiol 15:439–446. CrossRefGoogle Scholar
  55. Ramírez-Castrillón M, Camargo Mendes SD, Valente P (2017) South Brazilian wines: culturable yeasts associated to bottled wines produced in Rio Grande do Sul and Santa Catarina. World J Microbiol Biotechnol 33:77. CrossRefPubMedGoogle Scholar
  56. Redžepović S, Orlić S, Sikora S, Majdak A, Pretorius I (2002) Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett Appl Microbiol 35:305–310. CrossRefPubMedGoogle Scholar
  57. Rementeria A, Rodriguez JA, Cadaval A, Amenabar R, Muguruza JR, Hernando FL, Sevilla MJ (2003) Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country. North Spain). Int J Food Microbiol 86(1–2):201–207. CrossRefPubMedGoogle Scholar
  58. Ribéreau-Gayon P, Dubourdieu D, Doneche B, Lonvaud A (2006) Handbook of enology: the microbiology of wine and vinifications, vol 1, 2nd edn. Wiley, New York. CrossRefGoogle Scholar
  59. Romano P, Capece A, Serafino V, Romaniello R, Poeta C (2008) Biodiversity of wild strains of Saccharomyces cerevisiae as tool to complement and optimize wine quality. World J Microbiol Biotechnol 24:1797–1802. CrossRefGoogle Scholar
  60. Ruyters S, Salaets P, Oorts K, Smolders E (2013) Copper toxicity in soils under established vineyards in Europe: a survey. Sci Total Environ 443:470–477. CrossRefPubMedGoogle Scholar
  61. Sabate J, Cano J, Esteve-Zarzoso B, Guillamón JM (2002) Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157:267–274. CrossRefPubMedGoogle Scholar
  62. Schuck MR, Moreira FM, Guerra MP, Voltolini JA, Grando MS, Silva ALD (2009) Molecular characterization of grapevine from Santa Catarina, Brazil, using microsatellite markers. Braz J Agric Res 44(5):487–495. CrossRefGoogle Scholar
  63. Schuller D, Alves H, Dequin S, Casal M (2005) Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol Ecol 51(2):167–177. CrossRefPubMedGoogle Scholar
  64. Schuller D, Cardoso F, Sousa S, Gomes P, Gomes AC (2012) Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7(2):e32507.,pone.0032507 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shinohara T, Furuya H, Yanagida F, Takeo M (2003) Ecological distribution and phenotypic diversity of Saccharomyces cerevisiae strains from the wine-producing area in Yamanashi, Japan. Microbiol Cult Collect 19(2):69–80.
  66. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker JH (2015) The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res 25:762–774. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Torriani S, Zapparoli G, Suzzi G (1999) Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie Van Leeuwenhoek 75:207–215. CrossRefPubMedGoogle Scholar
  68. Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in genome-wide gene expression. Mol Biol Evol 20(6):955–963. CrossRefPubMedGoogle Scholar
  69. Treu L, Toniolo C, Nadai C, Sardu A, Giacomini A, Corich V, Campanaro S (2014) The impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains. Environ Microbiol 16(5):1378–1397. CrossRefPubMedGoogle Scholar
  70. Valero E, Shuller D, Cambon B, Casal M, Dequin S (2005) Dissemination and survival of commercial wine yeast in the vineyard: a large-scale, three-year study. FEMS Yeast Res 5:959–969. CrossRefPubMedGoogle Scholar
  71. Valero E, Schuller D, Cambon B, Casal M, Dequin S (2007) Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res 7:317–329. CrossRefPubMedGoogle Scholar
  72. Van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55:207–217Google Scholar
  73. Van Bakel H, Strengman E, Wijmenga C, Holstege FCP (2005) Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol Genomics 22:356–367. CrossRefPubMedGoogle Scholar
  74. van der Westhuizen T, Augustyn O, Pretorius I (2017) Geographical distribution of indigenous Saccharomyces cerevisiae strains isolated from vineyards in the coastal regions of the Western Cape in South Africa. S Afr J Enol Vitic 21(1):3–9. CrossRefGoogle Scholar
  75. Versavaud A, Courcoux P, Roulland C, Dulau L, Hallet J (1995) Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl Environ Microbiol 61(10):3521–3529PubMedPubMedCentralGoogle Scholar
  76. Vezinhet F, Blondin B, Hallet JN (1990) Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32(5):568–571. CrossRefGoogle Scholar
  77. Vezinhet F, Hallet JN, Valade M, Poulard A (1992) Ecological survey of wine yeast strains by molecular methods of identification. Am J Enol Vitic 43:83–86Google Scholar
  78. Viel A, Legras JL, Nadai C, Carlot M, Lombardi A, Crespan M, Migliaro D, Giacomini A, Corich V (2017) The geographic distribution of Saccharomyces cerevisiae isolates within three Italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Front Microbiol 8:1595. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yasokawa D, Murata S, Kitagawa E, Iwahashi Y, Nakagawa R, Hashido T, Iwahashi H (2008) Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis. Environ Toxicol 23(5):599–606. CrossRefPubMedGoogle Scholar
  80. Zeyl C (2000) Budding yeast as a model organism for population genetics. Yeast 16:773–784.;2-1.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Interdepartmental Centre for Research in Viticulture and Enology (CIRVE)University of PadovaConeglianoItaly
  2. 2.Department of Agronomy Food Natural resources Animals and Environment (DAFNAE)University of PadovaLegnaroItaly
  3. 3.Institute of Technology of Food for Health (itt Nutrifor)University of Vale do Rio dos Sinos (UNISINOS)Cristo Rei – São LeopoldoBrazil
  4. 4.Department of NutritionFederal University of Health Sciences of Porto Alegre (UFCSPA)Porto AlegreBrazil

Personalised recommendations