Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Assessing seasonal and long-term mangrove canopy variations in Sinaloa, northwest Mexico, based on time series of enhanced vegetation index (EVI) data

Abstract

The use of remote sensing tools for mangrove monitoring is currently a strategy used to preserve this important coastal vegetation type. However, the temporal resolution of most satellite imagery limits the analysis of seasonal changes. Here, seasonal trend analysis (STA) was performed using an enhanced vegetation index (EVI) monthly time series (2005–2016) edited from MOD13Q1 products (MODIS Terra), to detect changes in mangrove cover in Sinaloa State in northwestern Mexico. The results were compared with a baseline map derived from a post-classification comparison of two mangrove distribution maps of 2005 and 2015. The STA procedure enabled the identification of mangrove canopy seasonal cycles, with open canopies between May and July and closed canopies from August to October. It was also possible to detect annual and long-term changes in canopy, with positive trends observed in most of Sinaloa’s mangrove ecosystems, which partially agree with the post-classification comparison results. Despite their coarse resolution, using the MODIS EVI products proved to be useful to confidently detect short- and long-term changes in mangrove cover, particularly in large ecosystems. Consequently, land use change analyses using these inputs could help to take actions related to mangrove cover management, considering the trends of change in this vegetation type.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alonso-Pérez F, Ruiz-Luna A, Turner J, Berlanga-Robles CA, Mitchelson-Jacob MG (2003) Land cover changes and impact of shrimp aquaculture on the landscape in the Ceuta Coastal Lagoon System, Sinaloa, Mexico. Ocean Coast Manag 46:583–600. https://doi.org/10.1016/S0964-5691(03)00036-X

  2. Arreola-Lizárraga JA, Flores-Verdugo FJ, Ortega-Rubio A (2004) Structure and litterfall of an arid mangrove stand on the Gulf of California, Mexico. Aquat Bot 79:137–143. https://doi.org/10.1016/j.aquabot.2004.01.012

  3. Ball MC, Passioura JB (1995) Carbon gain in relation to water use: photosynthesis in mangroves. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer Study Edition, Berlin, pp 247–259. https://doi.org/10.1007/978-3-642-79354-7_12

  4. Baserra LNG, Galvani E (2013) Mangrove microclimate: a case study from southeastern Brazil. Earth Interact 17:1–16. https://doi.org/10.1175/2012EI000464.1

  5. Berlanga RCA (2006) Caracterización de los paisajes costeros de Sinaloa y norte de Nayarit, México a través del análisis de los patrones de cobertura del terreno. Dissertation, Universidad Nacional Autónoma de México

  6. Berlanga-Robles CA, Ruiz-Luna A (2002) Land use mapping and change detection in the coastal zone of northwest Mexico using remote sensing techniques. J Coast Res 18:514–522. https://doi.org/10.1016/j.ocecoaman.2011.04.004

  7. Berlanga-Robles CA, Ruiz-Luna A (2011) Caracterización paisajística de la costa de Sinaloa, México. In: Ruiz-Luna A, Berlanga-Robles CA, Betancourt-Lozano M (eds) Avances en Acuicultura y Manejo Ambiental. Trillas/Centro de Investigación en Alimentación y Desarrollo A. C., México, pp 191–216

  8. Berlanga-Robles CA, Ruiz-Luna A (2007) Análisis de las tendencias de cambio del bosque de mangle del sistema lagunar Teacapán-Agua Brava, México. Una aproximación con el uso de imágenes de satélite Landsat. Univ Ciencia 23:29-46. https://www.redalyc.org/articulo.oa?id=15423104. Accessed 28 June 2018

  9. Berlanga-Robles CA, Ruiz-Luna A, Trujillo-Batiz P (2008) Inventario de los humedales costeros del sistema lagunar Altata-Ensenada de Pabellón, Sinaloa, México a partir del análisis digital de imágenes de satélite Landsat TM del 2005. Invest Mar 29:3–11. http://www.rim.uh.cu/index.php/RIM/article/view/106. Accessed 28 June 2018

  10. Berlanga-Robles CA, Ruiz-Luna A, Bocco G, Vekerdy Z (2011) Spatial analysis of the impact of shrimp culture on the coastal wetlands on the northern coast of Sinaloa, Mexico. Ocean Coast Manag 54:535–543. https://doi.org/10.1016/j.ocecoaman.2011.04.004

  11. Berlanga-Robles CA, Ruiz-Luna A, Nepita-Villanueva MR (2018) Seasonal trend analysis (STA) of MODIS vegetation index time series for the mangrove canopy of the Teacapan-Agua Brava Lagoon System, Mexico. GISci Remote Sens. https://doi.org/10.1080/15481603.2018.1533679

  12. Bernini E, Rezende CE (2010) Litterfall in mangroves in southeast Brazil. Pan-Am J Aquat Sci 5:508–519

  13. Blanco CM, Flores F, Ortiz MA et al (2011) Diagnostico funcional de Marismas Nacionales. Universidad Autónoma de Nayarit/Comisión Nacional Forestal, México

  14. Burchett W, Ellis A (2017) Package ‘npmv’. Available via DIALOG. https://cran.r-project.org/web/packages/npmv/npmv.pdf. Accessed 28 June 2018

  15. Chéret V, Denux JP (2011) Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GISci Remote Sens 48:171–194. https://doi.org/10.2747/1548-1603.48.2.171

  16. De la Lanza EG, Sánchez S, Sorani V, Bojórquez T (1996) Geological, hydrological, and mangrove features in the Coastal Plain of Nayarit, Mexico. Bol Investig Geogr 32:33–54

  17. Didan K, Munoz AB, Solano R, Huete A (2015) MODIS vegetation index user’s guide (MOD13 Series). Available via DIALOG https://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_June_2015_C6.pdf. Accessed 28 June 2018

  18. Dodd RS, Rafii ZA (2002) Evolutionary genetics of mangroves: continental drift to recent climate change. Trees 16:80–86. https://doi.org/10.1007/s00468-001-0142-6

  19. Eastman JR (2016) TerrSet. Geospatial monitoring and modelling system. Tutorial. Clark Labs, Massachusetts

  20. Eastman JR, Sangermano F, Ghimire B et al (2009) Seasonal trend analysis of images time series. Int J Remote Sens 30:2721–2726. https://doi.org/10.1080/01431160902755338

  21. Eastman JR, Sangermano F, Machado EA, Rogan J, Anyamba A (2013) Global trends in seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens Basel 5:4799–4818. https://doi.org/10.3390/rs5104799

  22. Flores-Cárdenas F, Hurtado-Oliva MA, Doyle TW, Nieves-Soto M, Díaz-Castro S, Manzano-Sarabia M (2017) Litterfall production of mangroves in Huizache-Caimanero Lagoon System, México. J Coast Res 33:118–124. https://doi.org/10.2112/JCOASTRES-D-15-00242.1

  23. Flores-Verdugo F, González-Farías F, Ramírez-Flores O, Amezcua-Linares F, Yañez-Arancibia A, Alvarez M, Day JW (1990) Mangrove, aquatic primary productivity, and fish community dynamics in Teacapán-Agua Brava Lagoon-Estuarine System (Mexican Pacific). Estuaries 13:219–230. https://doi.org/10.2307/1351591

  24. Giri C, Long J, Abbas S, Murali RM, Qamer FM, Pengra B, Thau D (2015) Distribution and dynamics of mangrove forests of South Asia. J Environ Manag 148:101–111. https://doi.org/10.1016/j.jenvman.2014.01.020

  25. Hall-Beyer M (2003) Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes. IEEE Trans Geosci Remote Sens 41:1–8. https://doi.org/10.1109/TGRS.2003.817274

  26. Hernández Cornejo R, Koedam N, Ruiz Luna A, Troell M, Dahdouh-Guebas F (2005) Remote sensing and ethnobotanical assessment of the mangrove forest changes in the Navachiste-San Ignacio-Macapule Lagoon Complex, Sinaloa, Mexico. Ecol Soc 10:16. https://doi.org/10.5751/ES-01286-100116

  27. Jian Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112:3833–3845. https://doi.org/10.1016/j.rse.2008.06.006

  28. Kamal M, Phinn S, Johansen K (2014) Characterizing the spatial structure of mangrove features for optimizing image-based mangrove mapping. Remote Sens Basel 6:984–1006. https://doi.org/10.3390/rs6020984

  29. Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrica 33:159–174

  30. Langner A, Miettine J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob Change Biol 13:2329–2340. https://doi.org/10.1111/j.1365-2486.2007.01442.x

  31. Lee SY, Primavera JH, Dahdouh-Guebas F et al (2014) Ecological role services of tropical ecosystems: a reassessment. Glob Ecol Biogeogr 23:726–743. https://doi.org/10.1371/journal.pone.001009

  32. Lonard RI, Judd FW (1991) Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the Lower Rio Grande Valley, Texas. Southwest Nat 36:213–217

  33. Madrid EN, Armitage AR, López-Portillo J (2014) Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00503

  34. Mair P, Wilcox RR (2019) Robust statistical methods in R using the WRS2 package. Behav Res Methods. https://doi.org/10.3758/s13428-019-01246-w

  35. Mandanici E, Bitelli G (2016) Preliminary comparison of Sentinel-2 and Landsat 8 imagery for a combined use. Remote Sens 8:1014. https://doi.org/10.3390/rs8121014

  36. Manzano-Sarabia M, Millán-Aguilar O, Flores-Cárdenas F et al (2018) Current status of mangrove wetlands in Sinaloa: a biological corridor along the eastern margin of the Gulf of California, Mexico. In: Makowski C, Finkl CW (eds) Threats to mangrove: hazards, vulnerability. Springer, pp. 77–87. https://doi.org/10.1007/978-3-319-73016-5_4

  37. Markley JL, McMillan C, Thompson GA Jr (1982) Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Can J Bot 60:2704–2715. https://doi.org/10.1139/b82-330

  38. Monzalvo SIK (2006) Estimmación de la cobertura especial y análisis de la estructura forestall del manglar en Sinaloa, México aplicando técnicas de percepción remota. Dissertation, Universidad Nacional Autónoma de México

  39. Neeti N, Eastman JR (2011) A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Trans GIS 15:599–611. https://doi.org/10.1111/j.1467-9671.2011.01280.x

  40. Nepita-Villanueva MR, Berlanga-Robles CA, Ruiz-Luna A, Morales BJH (2019) Spatio-temporal mangrove canopy variation (2001–2016) assessed using the MODIS enhanced vegetation index (EVI). J Coast Conserv 23:589–597. https://doi.org/10.1007/s11852-019-00689-9

  41. Pastor-Guzman J, Dash J, Atkinson PM (2018) Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens Environ 205:71–84. https://doi.org/10.1016/j.rse.2017.11.009

  42. Pontius RG, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(11):4407–4429. https://doi.org/10.1080/01431161.2011.552923

  43. Quisthoudt K, Schmitz N, Randin, CF, Dahdouh-Guebas F, Robert EMR, Koedam N (2012) Temperature variation among mangrove latitudinal range limits worldwide. Trees 26. https://doi.org/10.1007/s00468-012-0760-1

  44. Rahman AF, Dragoni D, Didan K, Barreto A, Hutabarat JA (2013) Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity MODIS data. Remote Sens Environ 30:96–107. https://doi.org/10.1016/j.rse.2012.11.014

  45. Rioja-Nieto R, Barrera-Falcón E, Torres-Irineo E, Memdoza-González G, Cuervo-Robayo AP (2017) Environmental drivers of decadal change of a mangrove forest in the North Coast of the Yucatan Península, Mexico. J Coast Conserv 21:167–175. https://doi.org/10.1007/s11852-016-0486-0

  46. Rodríguez-Zuñiga MT, Troche-Souza C, Márquez-Mendoza AD et al (2013) Manglares de México. Extensión, Distribución y Monitoreo. Comisión Nacional para el conocimiento y Uso de la Biodiversidad, Mexico

  47. Rogan J, Schneider L, Christman Z, Millones M, Lawrence D, Schmook B (2011) Hurricane disturbance mapping using MODIS EVI data in the southeastern Yucatán, Mexico. Remote Sens Lett 2:259–267. https://doi.org/10.1080/01431161.2010.520344

  48. Rossi E, Rogan J, Schneider L (2013) Mapping forest damage in northern Nicaragua after Hurricane Felix (2007) using MODIS enhanced vegetation index data. GISci Remote Sens 50:171–194. https://doi.org/10.1080/15481603.2013.820066

  49. Ruiz-Luna A, Berlanga-Robles CA (1999) Modifications in coverage patterns and land use in the landscape around the Huizache-Caimanero Lagoon System, Sinaloa, Mexico: a multitemporal analysis LANDSAT images. Estuar Coast Shelf Sci 49(1):37–44

  50. Ruiz-Luna A, Berlanga-Robles CA (2003) Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in northwest Mexico. Landsc Ecol 18:159–171. https://doi.org/10.1023/A:1024461215456

  51. Ruiz-Luna A, Acosta-Velázquez J, Berlanga-Robles CA (2008) On the reliability of the data of extent of mangroves, a case study in Mexico. Ocean Coast Manag 51(4):342–351. https://doi.org/10.1016/j.ocecoaman.2007.08.004

  52. Ruiz-Luna A, Cervantes EA, Berlanga-Robles CA (2010) Assessing distribution patterns, extent and current condition of northwest Mexico mangroves. Wetlands 30:717–723. https://doi.org/10.1007/s13157-010-0082-2

  53. Sharma S, Hoque ATMR, Analuddin K, Hagihara A (2012) Litterfall dynamics in overcrowded mangrove Kandelia obovate (S., L.) young stand over five years. Estuar Coast Shelf Sci 98:31–41. https://doi.org/10.1016/j.ecss.2011.11.012

  54. Skakun S, Vermote E, Roger J-C, Franch B (2017) Combined Use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale. AIMS Geosci 3:163–186. https://doi.org/10.3934/geosci.2017.2.163

  55. Valderrama-Landeros L, Rodríguez-Zuñiga T, Troche SC et al (2017) Manglares de México: actualización y exploración de los datos del Sistema de monitoreo 1970/1980–2015. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico

  56. Valderrama L, Troche C, Rodríguez MT et al (2014) Evaluation of mangrove cover changes in Mexico during the 1970–2005 period. Wetlands 34:747–758. https://doi.org/10.1007/s13157-014-0539-9

  57. Verbesselt J, Hyndman RJ, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114:106–115. https://doi.org/10.1016/j.rse.2009.08.014

  58. Westermark PO (2015) Package ‘HarmonicRegresion’. Available via DIALOG. https://cran.r-project.org/web/packages/HarmonicRegression/HarmonicRegression.pdf. Accessed 29 June 2018

  59. Xion J, Thenkabail PS, Tilton JC, Gumma MK, Teluguntla P et al (2017) Nominal 30-m cropland extent map of continental africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens 9:1065. https://doi.org/10.3390/rs9101065

  60. Younes CN, Joyce KE, Maier SW (2017) Monitoring mangrove forests: are taking full advantage of technology. Int J Appl Earth Obs 63:1–14. https://doi.org/10.1016/j.jag.2017.07.004

  61. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges J, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475. https://doi.org/10.1016/S0034-4257(02)00135-9

  62. Zhang H, Wenping W, Dong W, Liu S (2014) Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–247. https://doi.org/10.1016/j.ecocom.2014.01.003

  63. Zhang X, Treitz PM, Chen D, Quan C, Shi L, Li X (2017) Mapping mangrove forest using multi-tidal remotely-sensed data and decision-tree-based procedure. Int J Appl Earth Obs 62:201–214. https://doi.org/10.1016/j.jag.2017.06.010

Download references

Acknowledgements

We thank the financial support from the National Council of Science and Technology (CONACYT) of the SEP-CONACYT Basic Science Project 157533 “Modeling the relationships between the spatial patterns of the mangrove forest and the distribution and abundance of penaeid shrimp in the T-Agua Brava lagoon system, Mexico”. The MODQ131 products were retrieved online, courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) and the USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, DAAC. The climatic data and the mangrove distribution maps of 2005 and 2015 used in this study were courtesy of the National Center for Environmental Prediction (NCEP), the Global Weather Data for SWAT and the National Commission for the Knowledge and Use of Biodiversity (CONABIO), respectively.

Author information

Correspondence to César Alejandro Berlanga-Robles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 

Fig. 7
figure7

Hurricanes landing on the coast of Sinaloa (October 2003–November 2014)

7 and Table

Table 5 Hurricanes landing on the Coast of Sinaloa (October 2003 to November 2014)

5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berlanga-Robles, C.A., Ruiz-Luna, A. Assessing seasonal and long-term mangrove canopy variations in Sinaloa, northwest Mexico, based on time series of enhanced vegetation index (EVI) data. Wetlands Ecol Manage (2020). https://doi.org/10.1007/s11273-020-09709-0

Download citation

Keywords

  • Mangrove seasonality
  • MODIS terra
  • Post-classification comparison
  • Seasonal trend analysis (STA)
  • Time series