Advertisement

Wetlands Ecology and Management

, Volume 27, Issue 4, pp 571–580 | Cite as

Leaf herbivory and fluctuating asymmetry as indicators of mangrove stress

  • Yurixhi Maldonado-López
  • Marcela Sofía Vaca-Sánchez
  • Armando Canché-Delgado
  • Silvia Ecaterina García-Jaín
  • Antonio González-Rodríguez
  • Tatiana Cornelissen
  • Pablo Cuevas-ReyesEmail author
Original Paper

Abstract

Fluctuating asymmetry (FA), a widely used measure of developmental instability in plants and animals, which describes random differences in size and/or shape between the two sides of a bilateral character. We used FA as a tool to detect stress in three mangrove species (Avicennia germinans, Laguncularia racemosa, Rhizophora mangle), growing in both disturbed and conserved habitats in the Atlantic coast of Mexico. In this region, disturbed habitats are the result of deforestation, livestock, tourism and agriculture activities. Twenty plants of each species were sampled in each of four sites (two disturbed and two conserved) and levels of FA, proportion of individuals with herbivory, proportion of leaves with damage, and leaf area removed by herbivores were evaluated. In disturbed habitats, regardless of plant species, more plants were attacked by insects, more leaves were damaged, and more leaf area was removed by herbivores, indicating higher overall damage to plants. We detected that FA levels varied significantly amongst mangrove species, they were higher in disturbed compared to conserved habitats, indicating the importance of FA as a monitoring tool of mangrove stress. A positive relationship between FA and herbivory levels also indicates that herbivores might be a source of stress.

Keywords

Fluctuating asymmetry Habitat disturbance Herbivory Mangroves 

Notes

Acknowledgements

Pablo Cuevas-Reyes thanks Coordinación de la Investigación Científica, UMSNH for their generous support. Cornelissen acknowledges CNPq for funding (307210/2016-2).

References

  1. Albarrán-Lara AL, Mendoza-Cuenca L, Valencia-Avalos S, González-Rodríguez A, Oyama K (2010) Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. Int J Plant Sci 171:310–322.  https://doi.org/10.1086/650317 CrossRefGoogle Scholar
  2. Allenbach DM, Sullivan KB, Lydy MJ (1999) Higher fluctuating asymmetry as a measure of susceptibility to pesticides in fishes. Environ Toxicol Chem 18:899–905CrossRefGoogle Scholar
  3. Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349.  https://doi.org/10.1017/S0376892902000231 CrossRefGoogle Scholar
  4. Alves-Silva E, Del-Claro K (2016) On the inability of ants to protect their plant partners and the effect of herbivores on different stages of plant reproduction. Austral Ecol 41:263–272.  https://doi.org/10.1111/aec.12307 CrossRefGoogle Scholar
  5. Anciles M, Marini MA (2000) The effects of fragmentation on fluctuating asymmetry in passerine birds of Brazilian tropical forests. J Appl Ecol 37:1013–1028CrossRefGoogle Scholar
  6. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  7. Arnold AE, Asquit NM (2002) Herbivory in a fragmented tropical forest: patterns from islands at Lago Gatún, Panama. Biodiver Conserv 11:1663–1680.  https://doi.org/10.1023/A:1016888000369 CrossRefGoogle Scholar
  8. Barberena-Arias MF, Aide TM (2002) Variation in diversity and species composition of insect communities in Puerto Rico. Biotropica 34:357–367.  https://doi.org/10.1646/0006-3606(2002)034%5b0357:VISATC%5d2.0.CO;2 CrossRefGoogle Scholar
  9. Bauerfeind S, Fischer K (2013) Testing the plant stress hypothesis: stressed plants offer better food to an insect herbivore. Entomol Exp Appl 149:148–158.  https://doi.org/10.1111/eea.12118 CrossRefGoogle Scholar
  10. Beasley DE, Bonisoli-Alquati A, Mousseau TA (2013) The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecol Indic 30:218–226.  https://doi.org/10.1016/j.ecolind.2013.02.024 CrossRefGoogle Scholar
  11. Blackenhorn WU, Reusch T, Muehlhauser C (1998) Fluctuating asymmetry, body size and sexual selection in the dung fly Sepsis cynipsea: testing the good genes assumptions and predictions. J Evol Biol 11:735–753CrossRefGoogle Scholar
  12. Bouillon S, Borges AV, Castañeda-Moya E et al (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:1–12.  https://doi.org/10.1029/2007GB003052 CrossRefGoogle Scholar
  13. Calles A, Castillo G, Garcia I, Hernández H, Legaria L, Márquez W, Moreno-Casasola P, Moreno R, Morosini F, Portilla E, Silva-López G, Vargas JM, Vázquez G (1998) Humedales en Veracruz. In: Abarca F, Herzig M (eds) Manual para el Manejo y Conocimiento de los Humedales. Textos Adicionales. SEMARNAP-Arizona Fish and Wildlife, MexicoGoogle Scholar
  14. Campagna C, Short FT, Polidoro BA, Mcmanus R, Collette BB, Pilcher NJ, De Mitcheson YS, Stuart SN, Carpenter KE (2011) Gulf of Mexico oil blowout increases risks to globally threatened species. Bioscience 61:393–397.  https://doi.org/10.1525/bio.2011.61.5.8 CrossRefGoogle Scholar
  15. CONABIO (2009) Manglares de México: Extensión y distribución, 2nd edn. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, p 99Google Scholar
  16. Constantino PAL, Monteiro RF, Wilson MD (2009) Gall midge attack intensity and host-plant response in a neotropical coastal ecosystem. Rev Bras Entomol 53:391–397.  https://doi.org/10.1590/S0085-56262009000300013 CrossRefGoogle Scholar
  17. Cornelissen T, Stiling P (2005) Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia 142:46–56.  https://doi.org/10.1007/s00442-004-1724-y CrossRefGoogle Scholar
  18. Cornelissen T, Stiling P (2011) Similar responses of insect herbivores to leaf fluctuating asymmetry. Arthropod Plant Int 5:59–69.  https://doi.org/10.1007/s11829-010-9116-1 CrossRefGoogle Scholar
  19. Cornelissen T, Stiling P, Drake B (2003) Elevated CO2 decreases leaf fluctuating asymmetry and herbivory by leaf miners on two oak species. Glob Change Biol 10:2736.  https://doi.org/10.1111/j.1365-2486.2003.00712.x Google Scholar
  20. Cuevas-Reyes P, Oyama K, González-Rodríguez A, Fernandes GW, Mendoza-Cuenca L (2011a) Contrasting herbivory patterns and leaf fluctuating asymmetry in Heliocarpus pallidus between different habitat types within a Mexican tropical dry forest. J Trop Ecol 27:383–391.  https://doi.org/10.1017/S026646741100006X CrossRefGoogle Scholar
  21. Cuevas-Reyes P, Fernandes GW, González-Rodríguez A, Pimenta M (2011b) Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of rupestrian host plants. Basic Appl Ecol.  https://doi.org/10.1016/j.baae.2011.04.004 Google Scholar
  22. Cuevas-Reyes P, Gilberti L, González-RodríguezA Fernandes GW (2013) Patterns of herbivory and fluctuating asymmetry in Solanum lycocarpum St. Hill (Solanaceae) along an urban gradient in Brazil. Ecol Indic 24:557–561.  https://doi.org/10.1016/j.ecolind.2012.08.011 CrossRefGoogle Scholar
  23. Cuevas-Reyes P, Novais PGC, Gélvez-Zúñiga I, Fernandes GW, Venâncio H, Santos JC, Maldonado-López Y (2018) Effects of ferric soils on arthropod abundance and herbivory on Tibouchina heteromalla (Melastomataceae): importance of fluctuating asymmetry as indicator of environmental stress. Plant Ecol 219:69–78.  https://doi.org/10.1007/s11258-017-0778-y CrossRefGoogle Scholar
  24. De Lacerda LD, Jose DV, de Rezende CA, Francisco MCF, Wasserman JC, Martins JC (1985) Leaf chemical characteristics affecting herbivory in a New World mangrove Forest. Biotropica 18:350–355CrossRefGoogle Scholar
  25. Dinesh R, Chaudhuri SG, Ganeshamurthy AN, Pramanik SC (2004) Biochemical properties of soils of undisturbed and disturbed mangrove forests of South Andaman (India). Wetl Ecol Manag 12:309–320CrossRefGoogle Scholar
  26. Doolittle WE (1987) Las Marismas to Panuco to Texas: the transfer of open range cattle ranching from Iberia through Northeastern Mexico. Conf Lat Am Geogr Yearb 13:3–11Google Scholar
  27. Elster C, Perdomo L, Polania J, Schnetter M-L (1999) Control of Avicennia germinans recruitment and survival by Junonia evarete larvae in a disturbed mangrove forest in Colombia. J Trop Ecol 15:791–805CrossRefGoogle Scholar
  28. Escós J (1997) Grazing impact on plant fractal architecture and fitness of a Mediterranean shrub (Anthyllis cytisoides). Funct Ecol 11:66–78CrossRefGoogle Scholar
  29. Farnsworth EJ, Ellison A (1991) Patterns of herbivory in Belizean mangrove swamps. Biotropica 23:555–567CrossRefGoogle Scholar
  30. Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecology 65:477–505Google Scholar
  31. Feller IC (2002) The role of herbivory by wood-boring insects in mangrove ecosystems in Belize. Oikos 97:167–176CrossRefGoogle Scholar
  32. Feng-Qin Z, You-Shao W, Zhi-Ping L, Jun-De D (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50CrossRefGoogle Scholar
  33. Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hipotheses. Oecologia 76:161–167CrossRefGoogle Scholar
  34. Freeman DC, Brown ML, Duda JJ, Graham JH, Emlen JM, Krzysik AJ, Balbach H, Kovacic DA, Zak JC (2004) Developmental instability in Rhus Copallinum L.: multiple stressors, years, and responses. Int J Plant Sci 165:53–63.  https://doi.org/10.1086/380986 CrossRefGoogle Scholar
  35. Freeman DC, Brown ML, Duda JJ, Graraham JH, Emlen JM, Krzysik AJ, Balbach H, Kovaci DA, Zak JC (2005) Leaf fluctuating asymmetry, soil disturbance and plant stress: a multiple year comparison using two herbs, Ipomoea pandurata and Cnidoscolus stimulosus. Ecol Indic 5:85–95.  https://doi.org/10.1016/j.ecolind.2004.05.002 CrossRefGoogle Scholar
  36. Gonçalves-Alvim SJ, Fernandes GW (2001) Biodiversity of galling insects: historical, community and habitat effects in four tropical savannas. Bio Conserv 10:79–98CrossRefGoogle Scholar
  37. Hansen LTT, Amundsen T, Forsgren E (1999) Symmetry: attractive not only to females. Proc R Soc Lond B 266:1235–1240CrossRefGoogle Scholar
  38. Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512.  https://doi.org/10.1093/aob/mcf076 CrossRefGoogle Scholar
  39. Joern A, Mole S (2005) The plant stress hypothesis and variable responses by blue grama grass (Bouteloua gracilis) to water, mineral nitrogen, and insect herbivory. J Chem Ecol 9:2069–2090.  https://doi.org/10.1007/s10886-005-6078-3 CrossRefGoogle Scholar
  40. Kathiresan K (2003) Insect folivory in mangroves. Indian J Mar Sci 32:237–239Google Scholar
  41. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251.  https://doi.org/10.1016/S0065-2881(01)40003-4 CrossRefGoogle Scholar
  42. Leamy LJ, Klingenberg CP (2005) The genetics and evolution of fluctuating asymmetry. Annu Rev Ecol Evol Syst 36:1–21.  https://doi.org/10.1146/annurev.ecolsys.36.102003.152640 CrossRefGoogle Scholar
  43. Lee KP, Roh C (2010) Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomol Exp Appl 136:151–163.  https://doi.org/10.1111/j.1570-7458.2010.01018.x CrossRefGoogle Scholar
  44. Lempa K, Martel J, Koricheva J, Haukioja K, Ossipov V, Ossipova S, Pihlaja K (2000) Covariation of fluctuating asymmetry, herbivory and chemistry during birch leaf expansion. Oecologia 122:354–360CrossRefGoogle Scholar
  45. Lens L, Van Dongen S, Galbusera P, Schenck T, Matthysen E, Van de Casteele T (2000) Developmental instability and inbreeding in natural bird populations exposed to different levels of habitat disturbance. J Evol Biol 13:889–896CrossRefGoogle Scholar
  46. Lewis M, Pryor R, Wilking L (2011) Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. Environ Pollut 159:2328–2346CrossRefGoogle Scholar
  47. Lovelock CE, Bennion V, Grinham A, Cahoon DR (2011) The role of surface and subsurface processes in keeping pace with sea-level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14:745–757CrossRefGoogle Scholar
  48. Lugo AE (1980) Mangrove ecosystems: successional or steady state? Biotropica 12:65–72.  https://doi.org/10.2307/2388158 CrossRefGoogle Scholar
  49. Maldonado-López Cuevas-Reyes P, González-Rodríguez Pérez-López G, Acosta-Gómez Oyama K (2015) Relationships among plant genetics, phytochemistry and herbivory patterns in Quercus castanea across a fragmented landscape. Ecol Res 30:133–143.  https://doi.org/10.1007/s11284-014-1218-2 CrossRefGoogle Scholar
  50. Maldonado-López Y, Cuevas-Reyes P, Oyama K (2016) Diversity of gall wasps (Hymenoptera:Cynipidae) associated with oak trees (Fagaceae: Quercus) in a fragmented landscape in Mexico. Arthropod Plant Interact 10:29–39.  https://doi.org/10.1007/s11829-015-9404-x CrossRefGoogle Scholar
  51. Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–118.  https://doi.org/10.2307/1310365 CrossRefGoogle Scholar
  52. Møller AP, Shykoff JA (1999) Morphological developmental stability in plants: patterns and causes. Int J Plant Sci 160:S135–S146.  https://doi.org/10.1086/314219 CrossRefGoogle Scholar
  53. Møller AP, Swaddle JP (1997) Asymmetry, developmental stability, and evolution. University Press, OxfordGoogle Scholar
  54. Moreno-Casasola P, López-Rosas H, Infante MD, Peralta LA, Travieso-Bello A, Warner BG (2009) Wetland differentiation in the landscape of La Mancha, coastal Veracruz, Mexico. Plant Ecol 200:37–52CrossRefGoogle Scholar
  55. Mumby PJ, Edwards AJ, Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536.  https://doi.org/10.1038/nature02286 CrossRefGoogle Scholar
  56. Nagamitsu T, Kawahara T, Hotta M (2004) Phenotypic variation and leaf fluctuating asymmetry in isolated populations of an endangered dwarf birch Betula ovalifolia in Hokkaido, Japan. Plant Species Biol 19:13–21.  https://doi.org/10.1111/j.1442-1984.2004.00097.x CrossRefGoogle Scholar
  57. Nagelkerken Blaber SJM, Bouillon S et al (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185.  https://doi.org/10.1016/j.aquabot.2007.12.007 CrossRefGoogle Scholar
  58. Palmer RA, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, and patterns. Annu Rev Ecol System 17:391–421.  https://doi.org/10.1146/annurev.es.17.110186.002135 CrossRefGoogle Scholar
  59. Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217CrossRefGoogle Scholar
  60. Piyakarnchana T (1981) Severe defoliation of Avicennia alba B1 by larvae of Cleora injectaria Walker. J Sci Soc Thailand 7:33–36.  https://doi.org/10.2306/scienceasia1513-1874.1981.07.033 CrossRefGoogle Scholar
  61. Price PW, Fernandes GW, Lara ACF, Brawn J, Barrios H, Wright MG, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–591CrossRefGoogle Scholar
  62. Rhoades DF (1983) Herbivore population dynamics and plant chemistry. In: Denno FR, McClure MS (eds) Variable plants and herbivores in natural and managed systems. Academic, New YorkGoogle Scholar
  63. Rikowski A, Grammer K (1999) Human body odour, symmetry and attractiveness. Proc R Soc Lond B 266:869–874CrossRefGoogle Scholar
  64. Robertson AI, Alongi DM, Boto KG (1992) Food chains and carbonfluxes. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, DCCrossRefGoogle Scholar
  65. Rozendaal DMA, Hurtado VH, Poorter L (2006) Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Func Ecol 20:207–216.  https://doi.org/10.1111/j.1365-2435.2006.01105.x CrossRefGoogle Scholar
  66. Rzedowski J (1978) Vegetación de México. LIMUSA, MéxicoGoogle Scholar
  67. SAS (2000) Categorical data analysis using the SAS system. SAS Institute, CaryGoogle Scholar
  68. Sobrado MA (2005) Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43:217–221CrossRefGoogle Scholar
  69. Söderman F, van Dongen S, Pakkasmaa S, Merila J (2007) Environmental stress increases skeletal xuctuating asymmetry in the moor frog Rana arvalis. Oecologia 151:593–604CrossRefGoogle Scholar
  70. Stokes ME, Davis CS, Koch GG (2000) Categorical data analysis using the SAS system, 2nd edn. SAS, CaryGoogle Scholar
  71. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43.  https://doi.org/10.1111/nph.12797 CrossRefGoogle Scholar
  72. Tavares de Menezes LF, Peixoto AL (2009) Leaf damage in a mangrove swamp at Sepetiba Bay, Rio de Janeiro, Brazil. Rev Bras Bot 32:715–724CrossRefGoogle Scholar
  73. Telhado C, Esteves D, Cornelissen T, Fernandes GW, Carneiro MAA (2010) Insect herbivores of Coccoloba cereifera do not select asymmetric plants. Environ Entomol 39:849–855.  https://doi.org/10.1603/EN09179 CrossRefGoogle Scholar
  74. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, New YorkGoogle Scholar
  75. Torrez-Terzo G, Pagliosa PR (2007) Fluctuating asymmetry as a useful biomarker of Environmental stress: a case of study with Avicennia schaueriana Stapf and Leechm. Ex moldenke (Acanthaceae). Insula 33:75–94Google Scholar
  76. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control andenemy diversity on a landscape scale. Biol Control 43:294–309CrossRefGoogle Scholar
  77. Utrera-López ME, Moreno-Casasola P (2008) Mangrove litter dynamics in La Mancha Lagoon, Veracruz, Mexico. Wetlands Ecol Manag 16:11–22.  https://doi.org/10.1007/s11273-007-9042-x CrossRefGoogle Scholar
  78. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815CrossRefGoogle Scholar
  79. Wauters LA, Dhondt AA, Knothe H, Parkin DT (1996) Fluctuating asymmetry and body size as indicators of stress in red squirrel populations in woodland fragments. J Appl Ecol 33:735–740CrossRefGoogle Scholar
  80. White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105.  https://doi.org/10.1007/BF0037979 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yurixhi Maldonado-López
    • 1
  • Marcela Sofía Vaca-Sánchez
    • 2
  • Armando Canché-Delgado
    • 2
  • Silvia Ecaterina García-Jaín
    • 2
  • Antonio González-Rodríguez
    • 3
  • Tatiana Cornelissen
    • 4
  • Pablo Cuevas-Reyes
    • 2
    Email author
  1. 1.CÁTEDRAS CONACYT-Instituto de Investigaciones sobre los Recursos NaturalesUniversidad Michoacana de San Nicolás de HidalgoNueva EsperanzaMexico
  2. 2.Facultad de BiologíaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  3. 3.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  4. 4.Department of Natural Sciences, Laboratory of Insect EcologyCampus Dom Bosco, Universidade Federal de São João Del ReiSão João Del ReiBrazil

Personalised recommendations