Wetlands Ecology and Management

, Volume 27, Issue 4, pp 539–551 | Cite as

Effects of soil flooding, sunlight and herbivory on seedlings of Annona glabra and Pachira aquatica in a tropical swamp

  • Dulce Infante-Mata
  • Patricia Moreno-Casasola
  • Teresa Valverde
  • Susana Maza-VillalobosEmail author
Original Paper


Wetland seedlings, in addition to dealing with the effects of flooding, must gain access to sunlight and avoid herbivore damage in order to establish. Understanding the effects of environmental factors on seedling growth and how plants modify their functional traits in response to them, is a challenge of wetland ecology. We evaluated the effects of different conditions of soil flooding (flooded and mesic), sunlight (closed and no canopy) and herbivory (presence and absence) on the survival, growth, and morphological traits of Annona glabra and Pachira aquatica seedlings, two dominant woody species of Neotropical swamps. We had eight experimental treatments with five replicates each. Our results showed that the survival of both species was high and was not affected by soil flooding, sunlight and herbivory. However, these factors affected plant growth rates. In general, the highest growth rates were observed in the treatment with high sunlight, mesic soil and herbivore exclusion. Both species displayed higher leaf biomass allocation under closed than under no canopy. Furthermore, under closed canopy conditions both species produced relatively more slender and taller stems, which may allow them to intercept light more efficiently. Also, both species showed low belowground biomass allocation in flooded soils, probably as a consequence of a high anoxic condition. Our results confirmed that soil flooding, sunlight and herbivory are important factors that influence the growth patterns of A. glabra and P. aquatica seedlings, but they do not affect seedling survival. This information may help resource managers to identify high-quality sites that deserve to be protected. Also, the knowledge on species responses to different environmental conditions may be useful in restoration programs for tropical swamp forests.


Biomass allocation Morphological traits Plant functional traits Relative growth rate Seedling survival Tropical wetland 



The authors thank Guillermo Angeles and María Luisa Martínez for useful comments on the manuscript. We would like to acknowledge the support of C. Madero, V. del Castillo and M. Arias during fieldwork. This study was funded by SEMARNAT-2002-C01-0190, the Canadian International Development Agency-University of Waterloo S-061870, and the Instituto de Ecología, A.C. (902-17). We are also grateful to CONACYT (#164467) for support awarded to the Dulce Infante-Mata.


  1. Agriculture and Resource Management Council of Australia and New Zealand, Australian and New Zealand Environment and Conservation Council and Forestry Ministers (2001) Weeds of national significance pond apple (Annona glabra) strategic plan. National Weeds Strategy Executive Committee, LauncestonGoogle Scholar
  2. Anderson JT, Landi AA, Marks PL (2009) Limited flooding tolerance of juveniles restricts the distribution of adults in an understory shrub (Itea virginica; Iteaceae). Am J Bot 96:1603–1611. CrossRefGoogle Scholar
  3. Baird SA, Anderegg LDL, Lacely M, HilleRisLambers J, van Volkenburgh E (2017) Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiol 37(9):1140–1150CrossRefGoogle Scholar
  4. Barton KE, Hanley ME (2013) Seedling-herbivore interactions: insights into plant defense and regeneration patterns. Ann Bot 112(4):643–650CrossRefGoogle Scholar
  5. Battaglia LL, Foré SA, Sharitz RR (2000) Seedling emergence, survival and size in relation to light and water availability in two bottomland hardwood species. J Ecol 88:1041–1050CrossRefGoogle Scholar
  6. Batzer DP, Cooper R, Wissinger SA (2007) Wetland animal ecology. In: Batzer D (ed) Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley, pp 242–284CrossRefGoogle Scholar
  7. Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377CrossRefGoogle Scholar
  8. Canelo T, Gaytán Á, González-Bornay G, Bonal R (2018) Seed loss before seed predation: experimental evidence of the negative effects of leaf feeding insects on acorn production. Integr Zool 13:238–250. CrossRefGoogle Scholar
  9. Castillo-Campos G, Medina AME (2002) Árboles y arbustos de la Reserva Natural de La Mancha, Veracruz. Instituto de Ecología, A. C, MéxicoGoogle Scholar
  10. Cisneros-Silva A, Castillo G, Chávez-Pesqueira M, Bello-Bedoy R, Camargo DI, Nuñez-Farfán J (2017) Light limitation reduces tolerance to leaf damage in Datura stramonium. Evol Ecol Res 18:351–362Google Scholar
  11. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, Van Der Heijden GA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  12. Costa AN, Vasconcelos HL, Bruna EM (2017) Biotic drivers of seedling establishment in Neotropical savannas: selective granivory and seedling herbivory by leaf-cutter ants as an ecological filter. J Ecol 105:132–141. CrossRefGoogle Scholar
  13. Cunningham AS, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588CrossRefGoogle Scholar
  14. Day RH, Doyle TW, Draugelis-Dale RO (2006) Interactive effects of substrate, hydroperiod, and nutrients on seedling growth of Salix nigra and Taxodium distichum. Environ Exp Bot 55:163–174CrossRefGoogle Scholar
  15. De la Barrera E, Smith WK (2009) Perspectives in biophysical plant ecophysiology: a tribute to Park S. Nobel. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  16. De Oliveira VC, Joly CA (2010) Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees 24:185–193CrossRefGoogle Scholar
  17. Diamond JM (1975) Assembly of species communities. In: Diamond JM, Cody ML (eds) Ecology and evolution of communities. Harvard University Press, Boston, pp 342–344Google Scholar
  18. Gattringer JP, Ludewig K, Harvolk-Schöning S et al (2018) Interaction between depth and duration matters: flooding tolerance of 12 floodplain meadow species. Plant Ecol 219:973–984. CrossRefGoogle Scholar
  19. Gómez-Pompa A, Lot A, Vázquez Yanes C, Soto M, Diego N (1972) Estudio preliminar de la vegetación y la flora de la región de Laguna Verde. Instituto de Biología, Universidad Nacional Autónoma de México, México, VeracruzGoogle Scholar
  20. Grime JP (2007) The scale-precision trade-off in spatial resource foraging by plants: restoring perspective. Ann Bot 99:1017–1021. CrossRefGoogle Scholar
  21. Hall RBW, Harcombe PA (1998) Flooding alters apparent position of floodplain seedlings on a light gradient. Ecology 79(3):847–855CrossRefGoogle Scholar
  22. Infante MD (2004) Germinación y establecimiento de Annona glabra (Annonaceae) y Pachira aquatica (Bombacaeae) en Humedales, La Mancha, Actopan, Ver. M.Sc. Dissertation. Instituto de Ecología A.C., Xalapa, MéxicoGoogle Scholar
  23. Infante MD (2011) Estructura y dinámica de las selvas inundables de la planicie costera central del Golfo de México. Ph.D. Dissertation. Instituto de Ecología A.C., Xalapa, MéxicoGoogle Scholar
  24. Infante MD, Moreno-Casasola P (2005) Effect of in situ storage, light, and moisture on the germination of two wetland tropical trees. Aquat Bot 83:206–218CrossRefGoogle Scholar
  25. Infante-Mata D, Moreno-Casasola P, Madero-Vega C (2014) ¿Pachira aquatica, un indicador del límite del manglar? Rev Mex Biodivers 85:143–160. CrossRefGoogle Scholar
  26. Keddy PA (2000) Wetland ecology: principles and conservation. Cambridge University Press, New YorkGoogle Scholar
  27. Kitajima K, Cordero RA, Wright SJ (2013) Leaf life span spectrum of tropical woody seedlings: effects of light and ontogeny and consequences for survival. Ann Bot 112(4):685–699CrossRefGoogle Scholar
  28. Kotowski W, Beauchard O, Opdekamp W et al (2010) Waterlogging and canopy interact to control species recruitment in floodplains. Funct Ecol 24:918–926. CrossRefGoogle Scholar
  29. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol 17:490. CrossRefGoogle Scholar
  30. Lenssen JPM, Menting FBJ, der Putten WHV (2003) Plant responses to simultaneous stress of waterlogging and shade: amplified or hierarchical effects? New Phytol 157:281–290. CrossRefGoogle Scholar
  31. Li F, Li Y, Qin H, Xie Y (2011) Plant distribution can be reflected by the different growth and morphological responses to water level and shade in two emergent macrophyte seedlings in the Sanjiang Plain. Aquat Ecol 45:89–97. CrossRefGoogle Scholar
  32. Lockhart BR, Gardiner ES, Leininger TD et al (2018) Biomass accumulation in the endangered shrub Lindera melissifolia as affected by gradients of light availability and soil flooding. For Sci 64:631–640. Google Scholar
  33. Lopez OR, Kursar TA (1999) Flood tolerance of four tropical tree species. Tree Physiol 19:925–932CrossRefGoogle Scholar
  34. López RH, Tolome RJ (2009) Medición del potencial redox del suelo y construcción de electrodos de platino. In: Moreno-Casasola BP, Warner BG (eds) Breviario para describir, observar y manejar humedales. Serie Costa Sustentable No. 1. RAMSAR, Instituto de Ecología, A.C., CONANP, US Fish and Wildlife Service. US State Department, Press, Xalapa, pp 131–138Google Scholar
  35. Lot HA (1991) Vegetación y flora vascular acuática del estado de Veracruz. Ph.D. Dissertation, Facultad de Ciencias, Universidad Autónoma de México, México, D.F., MéxicoGoogle Scholar
  36. Lot HA, Novelo A (1990) Forested wetlands of Mexico. In: Lugo AE, Brinson M, Brown S (eds) Forest wetlands, encyclopedia ecosystems of the world, vol 15. Elsevier Press, Amsterdam, pp 287–298Google Scholar
  37. Lucas CM, Bruna ME, Nascimento NMC (2013) Seedling co-tolerance of multiple stressors in a disturbed tropical floodplain forest. Ecosphere 4:1–20Google Scholar
  38. Menéndez LF (1976) Los manglares de la Laguna de Sontecomapan, Los Tuxtlas, Veracruz, Estudio florístico-ecológico. B. Sc. Dissertation, Facultad de Ciencias, Universidad Autónoma de México, Mexico, D.F., MéxicoGoogle Scholar
  39. Menges SE, Waller MD (1983) Plant strategies in relation to elevation and light in floodplain herbs. Am Nat 122(4):454–473CrossRefGoogle Scholar
  40. Mielke MS, Schaffer B (2010) Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environ Exp Bot 68:113–121. CrossRefGoogle Scholar
  41. Moreno-Casasola P, Infante MD, López-Rosas H (2012a) Tropical freshwater swamps and marshes. In: Batzer DP, Baldwin AH (eds) Wetland habitats of North America: ecology and conservation concerns. University of California Press, Berkeley, pp 267–282Google Scholar
  42. Moreno-Casasola P, Rosas HL, Rodríguez-Medina K (2012b) From tropical wetlands to pastures on the coast of the gulf of Mexico. Pastos 42:185–217Google Scholar
  43. Moss B (2010) Ecology of freshwaters. A view for the twenty-first century. Wiley-Blackwell, LondonGoogle Scholar
  44. Niinemets Ü (2010a) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manag 260:1623–1639. CrossRefGoogle Scholar
  45. Niinemets Ü (2010b) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res 25(4):693–714CrossRefGoogle Scholar
  46. Novelo RA (1978) La vegetación de la Estación Biológica el Morro de la Mancha, Veracruz. Biotica 3:9–23Google Scholar
  47. NurZhafarina A, Asyraf M (2017) Effects of biotic and abiotic environmental stimuli on the morphology and biomass allocation of Mimosa pigra L. Sains Malays 46(8):1241–1248CrossRefGoogle Scholar
  48. Oliveira AS, Ferreira CS, Graciano-Ribeiro D, Franco AC (2015) Anatomical and morphological modifications in response to flooding by six cerrado tree species. Acta Bot Bras 29(4):478–488CrossRefGoogle Scholar
  49. Orozco SA, Lot HA (1976) La vegetación de las zonas inundables del sureste de Veracruz. Biotica 1:1–44Google Scholar
  50. Packham JR, Willis AJ (1982) The influence of shading and of soil type on the growth of Galeobdolon luteum. J Ecol 70:491–512CrossRefGoogle Scholar
  51. Pezeshki SR (1994) Plant response to flooding. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, pp 289–321Google Scholar
  52. Pezeshki SR, DeLaune RD (2012) Soil oxidation-reduction in wetlands and its impact on plant functioning. Biology 1:196–221CrossRefGoogle Scholar
  53. Pisicchio CM, Bianchini E, Pimenta JA, Sert MA, Davaso-Fabro VM, Medri ME (2010) Heliocarpus popayensis Kunth (Malvaceae) tolera a hipoxia do substrato? Acta Sci 32(2):201–209. Google Scholar
  54. Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Funct Plant Biol 27:1191. CrossRefGoogle Scholar
  55. Rico-Gray V (1982) Estudio de la vegetación de la zona costera inundable del noroeste del estado de Campeche, México: Los Petenes. Biotica 7:171–190Google Scholar
  56. Sánchez LOI (2018) Evaluación de los cambios en la estructura y funcionamiento de la selva inundable de la ANP Ciénaga del Fuerte, Tecolutla, Veracruz, durante las acciones de restauración. M.Sc Dissertation. Instituto de Ecología A.C., Xalapa, MéxicoGoogle Scholar
  57. Sena GAR, Kozlowski TT (1980) Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiol 66:267–271CrossRefGoogle Scholar
  58. Steven JC, Gaddis AL (2017) Drought and simulated deer herbivory reduce growth in Atlantic white cedar seedlings. Botany 95:531–538. CrossRefGoogle Scholar
  59. Striker GG, Insausti P, Grimoldi AA (2008) Flooding effects on plants recovering from defoliation in Paspalum dilatatum and Lotus tenuis. Ann Bot 102:247–254. CrossRefGoogle Scholar
  60. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542. CrossRefGoogle Scholar
  61. Tiner RW (2016) Plant indicators of wetlands and their characteristic. In: Tiner RW (ed) Wetland indicators, a guide to wetland formation, identification, delineation, classification, and mapping. CRC Press, Boca Raton, pp 157–240CrossRefGoogle Scholar
  62. Tsindi MF, Kupika OL, Moses M, Simbarashe M (2016) Seasonal variation in population structure and status of selected herbivores in the Mana Pools National Park flood plain, Zimbabwe. Poult Fish Wildl Sci. Google Scholar
  63. Vartapetian BB, Andreeva IN, Generozova IP, Polyakova LI, Maslova IP, Dolgikh YI, Stepanova AY (2003) Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot 91(2):155–172CrossRefGoogle Scholar
  64. Vázquez G, Legaria-Moreno L (2006) Las algas. In: Moreno-Casasola P (ed) Entornos veracruzanos: la costa de La Mancha. Instituto de Ecología, A.C., Veracruz, Mexico, pp 247–260Google Scholar
  65. Wantzen KM, Marchese MR, Marques MI, Battirola LD (2016) Invertebrates in neotropical floodplains. In: Batzer D, Boix D (eds) Invertebrates in freshwater wetlands: an international perspective on their ecology. Springer International Publishing, Cham, pp 493–524. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.El Colegio de la Frontera Sur, Unidad TapachulaTapachulaMéxico
  2. 2.Instituto de Ecología A. CXalapaMéxico
  3. 3.Departamento de Ecología y Recursos Naturales, Facultad de CienciasUniversidad Nacional Autónoma de México. Ciudad UniversitariaCiudad de MéxicoMéxico
  4. 4.CONACYT - El Colegio de la Frontera Sur, Unidad TapachulaTapachulaMéxico

Personalised recommendations