Advertisement

Wetlands Ecology and Management

, Volume 27, Issue 2–3, pp 427–442 | Cite as

Production and biomass of mangrove roots in relation to hydroperiod and physico-chemical properties of sediment and water in the Mecoacan Lagoon, Gulf of Mexico

  • Jony R. TorresEmail author
  • Everardo Barba
  • Francisco J. Choix
Original Paper

Abstract

Production and biomass information of roots is valuable for understanding the ecological process within mangroves. In this study, the production, biomass, turnover rate, and longevity of underground roots of mangrove (Rhizophora mangle L., Laguncularia racemosa L. Gaertn, and Avicennia germinans L. Stearn), as well as the density and biomass of pneumatophores was evaluated in relation to hydroperiod and physico-chemical properties of substrate and water in the Mecoacan Lagoon, Gulf of Mexico. Root extraction was performed in order to measure the biomass and production of roots by in-growth core technique; whilst the hydroperiod and physico-chemical parameters in water were determined using piezometers. The study was conducted from September 2016 to August 2017. A total root biomass of 23.7 tonDw ha−1 (subterranean roots + pneumatophores) was weighing; the large roots showed the highest biomass weighing 1532 ± 254 gDw m−2; followed by the medium roots (189 ± 30 gDw m−2) and fine roots (194 ± 27 g Dw m−2). The average total production was 0.41 ± 0.05 g m−2 day−1, an average turnover rate of 0.41 ± 0.07 year−1 and longevity of 4.04 ± 0.07 years. Pneumatophores showed average heights of 17.8 ± 0.8 cm with a density of 292 ± 30 pneumatophores m−2 and average biomass of 453 ± 51 gDw m−2. In conclusion, the production and biomass of subterranean roots and pneumatophores show spatial variations controlled by environmental factors as hydroperiod, interstitial redox potential, mangrove tree density and soil moisture content.

Keywords

Mangrove Roots biomass Longevity Pneumatophore Hydroperiod 

Notes

Acknowledgements

This study related part of the research activities carried out with the Grant offered for Project 269540 by National Council of Science and Technology (CONACyT) and the National Commission for Natural Protected Areas (CONANP). Additional support was provided by the Network for the Knowledge of Coastal Resources in Southeastern Mexico (RECORECOS).

References

  1. Adame MF, Teutli C, Santini NS, Caamal JP, Zaldívar-Jiménez A, Hernández R, Herrera-Silveira JA (2014) Root biomass and production of mangroves surrounding a karstic oligotrophic Coastal lagoon. Wetlands 34:479–488CrossRefGoogle Scholar
  2. Alongi DM, Clough BF, Dixon P, Tirendi F (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17:51–60CrossRefGoogle Scholar
  3. Ball MC (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning and salt balance. Aust J Plant Physiol 15:447–464Google Scholar
  4. Ball MC (2002) Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees 16:126–139CrossRefGoogle Scholar
  5. Briggs N (1977) Estimates of biomass in a temperate mangrove community. Aust J Ecol 2:369–373CrossRefGoogle Scholar
  6. Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399CrossRefGoogle Scholar
  7. Cardona-Olarte P, Twilley RR, Krauss KW, Rivera-Monroy VH (2006) Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia 569:325–341CrossRefGoogle Scholar
  8. Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, Marx BD, Coronado-Molina C, Ewe SM (2011) Patterns of root dynamics in mangrove forests along environmental gradients in the florida coastal everglades, USA. Ecosystems 14:1178–1195CrossRefGoogle Scholar
  9. Chapin SF (1991) Integrated responses of plants to stress. Bioscience 41:29–36CrossRefGoogle Scholar
  10. Chen R, Twilley RR (1999) Pattern of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22:955–970CrossRefGoogle Scholar
  11. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111CrossRefGoogle Scholar
  12. Clough BF (1992) Primary productivity and growth of mangrove forests. In: Alongi DM (ed) Tropical mangrove ecosystems. American Geophysical Union, Washington DC, pp 225–249CrossRefGoogle Scholar
  13. Connor R, Chmura GL (2000) Dynamics of above- and belowground organic matter in a high latitude macrotidal saltmarsh. Mar Ecol Prog Ser 204:101–110CrossRefGoogle Scholar
  14. Cormier N (2003) Belowground productivity in mangrove forests of Pohnpei and Kosrae, Federal States of Micronesia. Dissertation, University of Lousiana at Lafayette. Biology DepartmentGoogle Scholar
  15. Cromier N, Twilley RR, Ewel KC, Kraauss KW (2015) Fine root productivity varies along nitrogen and phosphorus gradient in high-rainfall mangrove forests of Micronesia. Hidrobiologia 750:69–87CrossRefGoogle Scholar
  16. Dahdouh-Guebas F, Kairo JG, Bondt RD, Koedam N (2007) Pneumatophore height and density in relation to microtopography in the grey mangrove Avicennia Marina. Belg J Bot 140(2):213–221Google Scholar
  17. Day-Jr JW, Coronado-Molina C, Vera-Herrera FR, Twilley R, Rivera-Monroy VH, Álvarez-Guillen H, Conner W (1996) A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat Bot 55:39–60CrossRefGoogle Scholar
  18. Domínguez JC, Sánchez AJ, Florido R, Barba ME (2003) Distribución de los macrocrustáceos en la Laguna Mecoacán, al sur del Golfo de Mexico. Hidrobiológica 13(002):127–136Google Scholar
  19. Domínguez-Domínguez M, Zavala-Cruz M, Martínez-Zurimendi P (2011) Manejo forestal sustentable de los manglares de Tabasco. Secretaría de Recursos Naturales y Protección Ambiental. Colegio de Postgraduados, Villahermosa, p 137Google Scholar
  20. Eamus D, Chen X, Kelley G, Hutley LB (2002) Root biomass and fractal analyses of an open Eucalyptus forest in a savanna of north Australia. Aust J Bot 50(1):31–41CrossRefGoogle Scholar
  21. Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60CrossRefGoogle Scholar
  22. George-Zamora A, Sevilla-Hernández ML, Aldana-Aranda D (2003) Ciclo ganódico del ostión americano Crassostrea virginica (Lamellibranchia: Ostreidae) en Mecoacán, Tabasco, México. Revista de Biología Tropical 51(4):109–117Google Scholar
  23. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologyst 147:13–31CrossRefGoogle Scholar
  24. Giraldo BS (2005) Belowground productivity of mangrove forests in southwest Florida. Ph.D. Dissertation. Louisiana State University: The Department of Oceanography and Coastal SciencesGoogle Scholar
  25. Golley FB, Odum HT, Wilson RF (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43(1):34–62CrossRefGoogle Scholar
  26. Golley FB, Mcginnis JT, Clements RG, Child GI, Duever MJ (1975) Mineral cycling in a tropical moist forest ecosystem. The University of Georgia Press, AthensGoogle Scholar
  27. Gómez AH (1977) Determinación de corrientes en la laguna costera Mecoacán de Tabasco, Mexico. Ciencias Marinas 4:67–80CrossRefGoogle Scholar
  28. Hernández N (2007) Abundancia y distribución de Cnidarios (Medusa) y Ctecnóforos (Agua Mala) En la Laguna Mecoacán Paraíso, Tabasco. Dissertation, Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias BiológicasGoogle Scholar
  29. Infante MD (2011) Estructura y dinámica de las selvas inundables de la planicie costera central del Golfo de Mexico. Ph.D. Dissertation, INECOL. A. C. Jalapa, Veracruz, MexicoGoogle Scholar
  30. Infante-Mata D, Tovilla-Hernández C, Ovalle-Estrada F, De-La-Presa JC, Cruz-Montes G, López-Urbina JH (2014) Caracterización de la salinidad en la temporada de secas en manglares y otros humedales de la laguna Mecoacán, Tabasco. In: González-Espinoza M, Brunel-Manse MC (eds) Montañas, pueblo y agua. Dimensiones y realidades de la cuenca Grijalva Mexico D.F. El Colegio de la Frontera Sur, Villahermosa, pp 283–296Google Scholar
  31. Khan MN, Suwa R, Hagihara A (2007) Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil-vegetation system. Wetlands Ecol Manag 15:141–153CrossRefGoogle Scholar
  32. Klute A (1986) Methods of soils analysis. Part 1. Physical and mineralogical methods, 2nd edn. EUA, Madison, p 1188Google Scholar
  33. Komiyama A, Havanond S, Srisawatt W, Mochida Y, Fujimoto K, Ohnishi T, Miyagi T (2000) Top/root ratio of a secondary mangrove Ceriops tagal (Perr.) C.B. Rob Forest Forest Ecol Manag 139:127–134CrossRefGoogle Scholar
  34. Krauss KW, Doyle TW, Twilley RR, Rivera-Monroy V, Sullivan JK (2006) Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569:311–324CrossRefGoogle Scholar
  35. Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, Reef R, Chen L (2014) How mangrove forests adjust to rising sea level. New Phytol 202(1):19–34CrossRefGoogle Scholar
  36. López B, Sabaté S, Gracia C (1998) Fine root dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiol 18:601–606CrossRefGoogle Scholar
  37. López-Portillo J, Ezcurra E (1989) Response of three mangroves to salinity in two geoforms. Funct Ecol 3(3):355–361CrossRefGoogle Scholar
  38. Lugo AE, Brinson MM (1988) Forested wetlands in freshwater and salt-water environments. Limnol Oceanogr 33:894–909Google Scholar
  39. Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64CrossRefGoogle Scholar
  40. Mackey AP (1993) Biomass of the mangrove Avicennia marina (Forsk.) Vierh. Near Brisbane, South-eastern Queensland. Aust J Mar Freshw Res 44(5):721–725CrossRefGoogle Scholar
  41. McKee KL, Mendelssohn IA, Hester MW (1988) Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am J Botany 75(9):1352–1359CrossRefGoogle Scholar
  42. McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556CrossRefGoogle Scholar
  43. Middleton BA, Mckee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828CrossRefGoogle Scholar
  44. Moreno-Casasola P, Warner B (2009) Breviario para describir, observar y manejar humedales. Serie Costa Sustentable no 1. RAMSAR, Instituto de Ecología A.C., CONANP, US Fish and Wildlife Service, US State Department. Xalapa, Ver. México. 406 pp. http://www1.inecol.edu.mx/inecol/libros/Breviario_Humedales.pdf
  45. Pennington TD, Sarukhán J (2005) Árboles tropicales de Mexico: manual para la identificación de las principales especies. UNAM/FCE, MexicoGoogle Scholar
  46. Peralta PL, Infante DM, Moreno-Casasola P (2009) Construcción e instalación de Piezómetros. In: Moreno-Casasola P, Warner BG (eds) Breviario para describir, observar y manejar humedales. Xalapa, Veracruz, Mexico: Serie Costa Sustentable No. 1. RAMSAR, Instituto de Ecología, A.C.; Fish and Wildlife Service, US State Department, pp 17–30Google Scholar
  47. Peters EC, Gassman NJ, Firman JR, Richmond H, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40CrossRefGoogle Scholar
  48. Pezeshki MR, DeLaune RD, Patrick WH (1990) Differential response of selected mangroves to soil flooding and salinity: gas exchange and biomass partitioning. Can J For Res 20:869–874CrossRefGoogle Scholar
  49. Pezeshki SR, DeLaune RD, Patrick WH (1993) Responses of forested wetlands species to alteration of soil hydrology/chemistry. In: Landin MC (eds) Wetlands. New Orleans: proceedings of 13th annual conference society of wetland scientists, pp 878–885Google Scholar
  50. Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove forests in Florida. Biotrópica 9(3):195–212CrossRefGoogle Scholar
  51. Powell SW, Day FP (1991) Root production in four communities in the Great Dismal Swamp. Am J Bot 78:288–297CrossRefGoogle Scholar
  52. Purnobasuki H, Suzuki M (2005) Functional anatomy or air conducting network on the pneumatophores of a mangrove plant, Avicennia marina (Forsk) Vierh. Asian J Plant Sci 4(4):334–347CrossRefGoogle Scholar
  53. Reef R, Winter K, Morales J, Adame MF, Reef DL (2015) The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Physiol Plant 154:358–368CrossRefGoogle Scholar
  54. Reef R, Slot M, Motro U, Motro M, Motro Y, Adame MF, Garcia M, Aranda J, Lovelock CE, Winter K (2016) The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Photosynth Res 129:159–170CrossRefGoogle Scholar
  55. Saifullah SM, Elahi E (1992) Pneumatophore density and size in mangroves of Karachi, Pakistan. Pak J Bot 42(1):5–10Google Scholar
  56. Saintilan N (1997a) Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Mar Freshw Res 48(2):147–152CrossRefGoogle Scholar
  57. Saintilan N (1997b) Above and below-ground biomass of mangroves in a sub-tropical estuary. Mar Freshw Res 48(7):601–604CrossRefGoogle Scholar
  58. Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398CrossRefGoogle Scholar
  59. Steel A, Torrie M (1996) Bioestadística: Principios y procedimientos, 2nd edn. Mexico, Edit. McGrawHillGoogle Scholar
  60. Tam NF, Wong YS (1997) Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage. Hydrobiologia 352:67–75CrossRefGoogle Scholar
  61. Tam NFY, Wong YS, Lan CY, Chen GZ (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295:193–201CrossRefGoogle Scholar
  62. Thom BG (1967) Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. J Ecol 55:301–343CrossRefGoogle Scholar
  63. Toma TK, Nakamura P, Patanaponpaiboon P, Ogino K (1991) Effect of flooding water level and plant density on growth of pneumatophore of Avicennia marina. Tropics 1:75–82CrossRefGoogle Scholar
  64. Tomlinson PB (1986) The botany of mangrove. University Press, Cambridge, p 413Google Scholar
  65. Torres JR, Infante-Mata D, Sánchez AJ, Espinoza-Tenorio A, Barba E (2017) Atributos estructurales, productividad (hojarasca) y fenología del manglar en la Laguna Mecoacán, Golfo de Mexico. Revista de Biología Tropical 65(4):1592–1608CrossRefGoogle Scholar
  66. Torres JR, Infante-Mata D, Sánchez AJ, Espinoza-Tenorio A, Barba E (2018) Degradación de hojarasca y aporte de nutrientes del manglar en la Laguna Mecoacán, Golfo de Mexico. Revista de Biología Tropical 66(2):892–907CrossRefGoogle Scholar
  67. Twilley RR, Rivera-Monroy V (2005) Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J Coast Res 40:79–93Google Scholar
  68. Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89CrossRefGoogle Scholar
  69. Walkley A, Black LA (1934) An examination of the method for determining soil organic matter, and proposed modification of the chromic acidtritation method. Soil Sci 37:29–38CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Manejo sustentable de cuencas y zonas costerasEl Colegio de la Frontera SurVillahermosaMexico
  2. 2.CONACYT-Departamento de Ingeniería QuímicaCUCEI-Universidad de GuadalajaraGuadalajaraMexico

Personalised recommendations