Advertisement

Wetlands Ecology and Management

, Volume 27, Issue 2–3, pp 295–310 | Cite as

Effects of the surrounding landscape on waterbird populations in estuarine ecosystems of central Chile

  • M. Paz AcuñaEmail author
  • María A. Vukasovic
  • H. Jaime Hernández
  • Tomás A. Acuña
  • Cristián F. Estades
Original Paper

Abstract

Waterbirds have high potential as bioindicators of the status and functioning of estuarine ecosystems, because they respond to multiple stress factors in a wide range of spatial scales. The objective of this study was to analyze the dependence of the population size of waterbird species with different degrees of association with waterbodies (High: HAW, Low: LAW) on attributes of the surrounding landscape. This was accomplished by long-term monitoring (2006–2015) of the populations of waterbirds in three estuaries of central Chile; the Itata, Mataquito, and Reloca Rivers. We acquired data on the composition and structure of the landscape for each site from satellite sensors (Landsat TM5, ETM + 7 and OLI 8), specifically the normalized difference moisture index (NDMI). We also obtained the covers of grassland and crops, bare soil and shrubland annually (summer) using a supervised classification. Using point-count data (2013–2015) from the landscape surrounding the Itata estuary, we compared the proportion of the population of different species present within and outside the wetland. The negative temporal correlation (p < 0.05) between the number of Yellow-billed pintails (Anas georgica) inside and outside the estuary strongly suggests the movement of individuals between these two habitats. We found that the abundance of many species in in the estuaries was affected by the variation of some landscape attributes. However, that proportion of LAW and HAW species showing such relationships did not differ significantly. The most important attributes of the landscape for waterbird populations were moisture (flooded sites) and vegetation photosynthetic vigor, shrubland cover. The growing use of waterbird population data as an environmental monitoring tool requires a deep understanding of the factors that drive the changes in both population numbers but also in the data describing the latter. This study highlights the importance of incorporating into waterbird population assessments information from both inside the waterbodies and from their surrounding landscapes.

Keywords

Bioindicators Estuaries Landscape attributes Waterbirds 

Notes

Acknowledgements

The long-term monitoring program upon which this study was based is funded by Arauco. We appreciate the support of Conicyt-Chile to MP Acuña during her doctoral studies. Several field assistants from the Wildlife Ecology Laboratory (LEVS) of the University of Chile, contributed their work during the field campaigns involved in this study. The comments of two anonymous referees significantly improved the quality of this paper.

Supplementary material

11273_2019_9660_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1749 kb)

References

  1. Adam P (2002) Salt marshes in a time of change. Environ Conserv 29:39–61.  https://doi.org/10.1017/S0376892902000048 CrossRefGoogle Scholar
  2. Agresti A (1992) A survey of exact inference for contingency tables. Stat Sci 7:131–153CrossRefGoogle Scholar
  3. Amano T, Ushiyama K, Fujita G, Higuchi H (2007) Predicting grazing damage by white-fronted geese under different regimes of agricultural management and the physiological consequences for the geese. J Appl Ecol 44:506–515.  https://doi.org/10.1111/j.1365-2664.2007.01314.x CrossRefGoogle Scholar
  4. Amat JA, Green AJ (2008) Waterbirds as bioindicators of environmental conditions waterbirds as bioindicators of environmental conditionsGoogle Scholar
  5. Batzer DP, Sharitz RR (2006) Ecology of freshwater and estuarine wetlands. University of California Press, BerkeleyGoogle Scholar
  6. Beerens JM, Noonburg EG, Gawlik DE (2015) Linking dynamic habitat selection with wading bird foraging distributions across resource gradients. PLoS ONE 10:e0128182.  https://doi.org/10.1371/journal.pone.0128182 CrossRefGoogle Scholar
  7. Bibby C, Burgess N, Hill D, Mustoe S (2000) Bird census techniques. Academic Press, CambridgeGoogle Scholar
  8. BirdlifeInternational (2004) Birds in Europe: population estimates, trends and conservation status. IUCN, CambridgeGoogle Scholar
  9. Blake ER (1977) Handbook of neotropical birds. Univ. Chicago Press, ChicagoGoogle Scholar
  10. Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78:45–61.  https://doi.org/10.1023/A:1016136723584 CrossRefGoogle Scholar
  11. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–252.  https://doi.org/10.1016/S0034-4257(97)00104-1 CrossRefGoogle Scholar
  12. Chambers SA (2008) Birds as Environmental Indicators Review of Literature. Park Victoria Tech Ser 48Google Scholar
  13. Cid FD, Antón RI, Caviedes-Vidal E (2007) Organochlorine pesticide contamination in three bird species of the Embalse La Florida water reservoir in the semiarid midwest of Argentina. Sci Total Environ 385:86–96.  https://doi.org/10.1016/j.scitotenv.2007.07.004 CrossRefGoogle Scholar
  14. Cihlar J, Laurent LS, Dyer JA (1991) Relation between the normalize difference vegetation index and ecological variables. Remote Sens Environ 35:279–298CrossRefGoogle Scholar
  15. Couve E, Vial C, Ruiz J (2016) Aves de Chile, sus Islas Oceánicas y Península. FS editorial, Punta ArenasGoogle Scholar
  16. Duncan DC (1987) Nest site distribution and overland brood movements of northern pintails in Alberta. J Wildl Manage 51:716–723.  https://doi.org/10.2307/3801732 CrossRefGoogle Scholar
  17. Eggermont PPB, LaRiccia VN (2009) Maximum penalized likelihood estimation: regression. Springer, New YorkGoogle Scholar
  18. Erwin RM, Custer TW (2000) Herons as indicators. In: Kushlan JA, Hafner H (eds) Heron conservation: San Diego. Academic Press, Cambridge, pp 313–330Google Scholar
  19. Estades CF, Vukasovic MA (2013) Waterbird population dynamics at estuarine wetlands of central Chile. Ornitol Trop 24:67–83Google Scholar
  20. Estades CF, Vukasovic MA, Aguirre L (2012) Aves En Los Humedales Costeros De Chile. In: Fariña JM, Camaño A (eds) Humedales Costeros De Chile: Aportes Científicos a Su Gestión Sustentable. Ediciones UC, Chile, pp 67–100Google Scholar
  21. Everard M, Noble D (2010) The development of bird indicators for British fresh waters and wetlands. Aquat Conserv Mar Freshw Ecosyst 20:117–124.  https://doi.org/10.1002/aqc.1074 CrossRefGoogle Scholar
  22. Fjeldså J (2004) The grebes. Oxford University Press, OxfordGoogle Scholar
  23. Forman RTT, Godron M (1981) Patches and structural components for a landscape ecology. Bioscience 31:733–740CrossRefGoogle Scholar
  24. Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67.  https://doi.org/10.2307/2241837 CrossRefGoogle Scholar
  25. Fuenzalida H (1971) Climatología de Chile. Dpto. Geofísica y Geodesia, Univ. de Chile, Santiago, ChileGoogle Scholar
  26. Gaillard J-M, Hebblewhite M, Loison A et al (2010) Habitat-performance relationships: finding the right metric at a given spatial scale. Phil Trans R Soc B 365:2255–2265.  https://doi.org/10.1098/rstb.2010.0085 CrossRefGoogle Scholar
  27. Gibbs JP (2000) Wetland loss and biodiversity conservation. Conserv Biol 14:314–317.  https://doi.org/10.1007/s10531-011-0010-7 CrossRefGoogle Scholar
  28. Goodall JD, Johnson AW, Philippi RA (1951) Las aves de Chile, su conocimiento y sus costumbres, vol II. Platt Establecimientos Gráficos, Buenos AiresGoogle Scholar
  29. Gregory RD, Van Strien A, Vorisek P et al (2005) Developing indicators for European birds. Phil Trans R Soc B 360:269–288.  https://doi.org/10.1098/rstb.2004.1602 CrossRefGoogle Scholar
  30. Haig SM, Mehlman DW, Oring LW (1998) Avian movements and wetland connectivity in landscape conservation. Conserv Biol 12:749–758CrossRefGoogle Scholar
  31. Hanowski JM, Danz NP, Howe RW et al (2007) Considerations for monitoring breeding birds in Great Lakes coastal wetlands. J Great Lakes Res 33:245–252.  https://doi.org/10.3394/0380-1330(2007)33%5b245:CFMBBI%5d2.0.CO;2 CrossRefGoogle Scholar
  32. Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer Series in StatisticsGoogle Scholar
  33. Herrando S, Anton M, Sardà-Palomera F et al (2014) Indicators of the impact of land use changes using large-scale bird surveys: land abandonment in a Mediterranean region. Ecol Indic 45:235–244.  https://doi.org/10.1016/j.ecolind.2014.04.011 CrossRefGoogle Scholar
  34. Hilty J, Merenlender A (2000) Faunal indicator taxa selection for monitoring ecosystem health. Biol Conserv 92:185–197.  https://doi.org/10.1016/S0006-3207(99)00052-X CrossRefGoogle Scholar
  35. Holling CS, Gunderson LH, Walters CJ (1994) The structure and dynamics of the Everglades system: guidelines for ecosystem restoration. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. Lucie Press, Delray Beach, pp 741–756Google Scholar
  36. Jackson S, Austin G, Armitage M (2006) Surveying waterbirds away from major waterbodies: implications for waterbird population estimates in Great Britain. Bird Study 53:105–111.  https://doi.org/10.1080/00063650609461423 CrossRefGoogle Scholar
  37. Jaramillo A (2003) Birds of Chile. Princeton University Press, PrincetonGoogle Scholar
  38. Johnson WP, Schmidt PM, Taylor DP (2014) Foraging flight distances of wintering ducks and geese: a review. Avian Conserv Ecol 9(2):2CrossRefGoogle Scholar
  39. Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107.  https://doi.org/10.1017/S0376892902000061 CrossRefGoogle Scholar
  40. Kuhn M (2016) A Short Introduction to the caret Package. In: R Found. Stat. Comput. cran.r-project. org/web/packages/caret/vignettes/caret.pdfGoogle Scholar
  41. Kumar S, Dhankhar R (2015) Monitoring of noise levels at various sites during winter season at Bhindawas wetland, Haryana, India. Curr World Environ 10:807–812CrossRefGoogle Scholar
  42. Kumar L, Schmidt K, Dury S, Skidmore A (2006) Imaging spectrometry in vegetation science. In: Meer FD, de Jong SM (eds) Imaging spectroscopy: basic principles and prospective applications. Springer, New York, pp 111–155Google Scholar
  43. Kushlan JA (1993) Colonial waterbirds as bioindicators of environmental change. Colon Waterbirds 16:223–251.  https://doi.org/10.2307/1521444 CrossRefGoogle Scholar
  44. Leito A, Truu J, Õunsaar M et al (2008) The impact of agriculture on autumn staging Eurasian Cranes (Grus grus) in Estonia. Agric Food Sci 17:53–62.  https://doi.org/10.2137/145960608784182281 CrossRefGoogle Scholar
  45. Lewis PA, Stevens JG (1991) Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS). J Am Stat Assoc 86:864–877.  https://doi.org/10.2307/2290499 CrossRefGoogle Scholar
  46. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Edición Universitaria, SantiagoGoogle Scholar
  47. MacMillan D, Hanley N, Daw M (2004) Costs and benefits of wild goose conservation in Scotland. Biol Conserv 119:475–485.  https://doi.org/10.1016/j.biocon.2004.01.008 CrossRefGoogle Scholar
  48. McLusky DS, Elliott M (2004) The estuarine ecosystem: ecology, threats and management. Oxford University Press, New YorkCrossRefGoogle Scholar
  49. Meijering E (2002) A chronology of iinterpolation: from ancient astronomy to modern signal and image processing. Proc IEEE 90:319–342.  https://doi.org/10.1109/5.993400 CrossRefGoogle Scholar
  50. Milborrow S (2016) Earth: Multivariate Adaptive Regression Spline Models. R package. https://cran.r-project.org/web/packages/earth
  51. Ministerio de Agricultura (1999) Decreto 36 Exento. https://www.leychile.cl/N?i=133388&f=1999-03-11&p= ESTABLECE
  52. Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, New JerseyGoogle Scholar
  53. Naugle DE, Higgins KF, Nusser SM, Johnson WC (1999) Scale-dependent habitat use in three species of prairie wetland birds. Landsc Ecol 14:267–276.  https://doi.org/10.1023/A:1008088429081 CrossRefGoogle Scholar
  54. Newton I (1998) Population limitation in birds. Academic Press, CambridgeGoogle Scholar
  55. Obernuefemann KP, Collazo J, Lyons JE (2013) Local movements and wetland connectivity at a migratory stopover of semipalmated Sandpipers (Calidris pusilla) in the southeastern United States. Waterbirds 36:63–76.  https://doi.org/10.1675/063.036.0110 CrossRefGoogle Scholar
  56. Ogden JC, Baldwin JD, Bass OL et al (2014) Waterbirds as indicators of ecosystem health in the coastal marine habitats of southern Florida: 1. Selection and justification for a suite of indicator species. Ecol Indic 44:148–163.  https://doi.org/10.1016/j.ecolind.2014.03.007 CrossRefGoogle Scholar
  57. Paillisson JM, Reeber S, Marion L (2002) Bird assemblages as bio-indicators of water regime management and hunting disturbance in natural wet grasslands. Biol Conserv 106:115–127.  https://doi.org/10.1016/S0006-3207(01)00239-7 CrossRefGoogle Scholar
  58. Pettorelli N, Vik JO, Mysterud A et al (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510.  https://doi.org/10.1016/j.tree.2005.05.011 CrossRefGoogle Scholar
  59. Pierluissi S, King SL, Kaller MD (2010) Waterbird nest density and nest survival in rice fields of southwestern Louisiana. Waterbirds 33:323–330.  https://doi.org/10.1675/063.033.0308 CrossRefGoogle Scholar
  60. R Core Team (2014). R: a language and environment for statistical computingGoogle Scholar
  61. Reynolds RE, Shaffer TL, Loesch CR, Cox RR Jr (2006) The Farm Bill and duck production in the Prairie Pothole Region: increasing the benefits. Wildl Soc Bull 34:963–974.  https://doi.org/10.2193/0091-7648(2006)34%5b963:TFBADP%5d2.0.CO;2 CrossRefGoogle Scholar
  62. Riffell SK, Keas BE, Burton TM (2001) Area and habitat relationships of birds in Great Lakes coastal wet meadows. Wetlands 21:492–507.  https://doi.org/10.1672/0277-5212(2001)021%5b0492:AAHROB%5d2.0.CO;2 CrossRefGoogle Scholar
  63. Rish I (2001) An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence. pp 41–46Google Scholar
  64. Robledano F, Esteve MA, Martínez-Fernández J, Farinós P (2011) Determinants of wintering waterbird changes in a Mediterranean coastal lagoon affected by eutrophication. Ecol Indic 11:395–406.  https://doi.org/10.1016/j.ecolind.2010.06.010 CrossRefGoogle Scholar
  65. Rodewald AD, Yahner RH (2001) Influence of landscape composition on avian community structure and associated mechanisms. Ecology 82:3493–3504.  https://doi.org/10.1890/0012-9658(2001)082%5b3493:IOLCOA%5d2.0.CO;2 CrossRefGoogle Scholar
  66. Rodríguez E, Arballo E (2008) Bird species occurring in rice fields and surrounding habitats at Merin Lagoon watershed, Uruguay. In: Hill JE, Hardy B (eds) Proceeding of the second temperate rice conference. pp 43–49Google Scholar
  67. Runge CA, Martin TG, Possingham HP et al (2014) Conserving mobile species. Front Ecol Environ 12:395–402.  https://doi.org/10.1890/130237 CrossRefGoogle Scholar
  68. Sinclair TR, Hoffer RM, Schreiber MM (1971) Reflectance and internal structure of leaves from several crops during a growing season. Agron J 63:864–868.  https://doi.org/10.2134/agronj1971.00021962006300060012x CrossRefGoogle Scholar
  69. Skagen SK, Knopf FL (1994) Migrating shorebirds and habitat dynamics at a prairie wetland complex. Wilson Bull 106:91–105Google Scholar
  70. Snäll T, Kindvall O, Nilsson J, Pärt T (2011) Evaluating citizen-based presence data for bird monitoring. Biol Conserv 144:804–810.  https://doi.org/10.1016/j.biocon.2010.11.010 CrossRefGoogle Scholar
  71. Sullivan BL, Wood CL, Iliff MJ et al (2009) eBird: a citizen-based bird observation network in the biological sciences. Biol Conserv 142:2282–2292.  https://doi.org/10.1016/j.biocon.2009.05.006 CrossRefGoogle Scholar
  72. Sundar KSG, Kittur S (2013) Can wetlands maintained for human use also help conserve biodiversity? Landscape-scale patterns of bird use of wetlands in an agricultural landscape in north India. Biol Conserv 168:49–56.  https://doi.org/10.1016/j.biocon.2013.09.016 CrossRefGoogle Scholar
  73. Taft OW, Haig SM (2006) Landscape context mediates influence of local food abundance on wetland use by wintering shorebirds in an agricultural valley. Biol Conserv 128:298–307.  https://doi.org/10.1016/j.biocon.2005.09.036 CrossRefGoogle Scholar
  74. Temple SA, Wiens JA (1989) Bird populations and environmental changes: can birds be bio-indicators? Am. Birds 43:260–270Google Scholar
  75. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  76. Tulloch AIT, Possingham HP, Joseph LN et al (2013) Realising the full potential of citizen science monitoring programs. Biol Conserv 165:128–138.  https://doi.org/10.1016/j.biocon.2013.05.025 CrossRefGoogle Scholar
  77. U.S.Census_Bureau (2017) X-13ARIMA-SEATS. https://www.census.gov/ts/x13as/docX13AS.pdf
  78. Walker J, Rotella JJ, Schmidt JH et al (2013) Distribution of duck broods relative to habitat characteristics in the Prairie Pothole Region. J Wildl Manage 77:392–404.  https://doi.org/10.1002/jwmg.466 CrossRefGoogle Scholar
  79. Weller MW (1999) Wetland birds: habitat resources and conservation implications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  80. WetlandInternational (2012) Waterbird Population Estimates, Fifth Edit. Summary Report. Wetlands International, Wageningen, The NetherlandsGoogle Scholar
  81. Ysebaert T, Meininger PL, Meire P et al (2000) Waterbird communities along the estuarine salinity gradient of the Schelde estuary, NW-Europe. Biodivers Conserv 9:1275–1296.  https://doi.org/10.1023/A:1008976306651 CrossRefGoogle Scholar
  82. Zaccagnini ME (2002) Los patos en las arroceras del noreste de Argentina: ¿plagas o recursos para caza deportiva y turismo sostenible? In: Blanco DE, Beltrán J, Balze V (eds) Primer Taller sobre la Caza de Aves Acuáticas. Hacia una estrategia para el uso sustentable. Wetland International, Buenos Aires, pp 35–57Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Geomatics and Landscape Ecology LabUniversity of ChileSantiagoChile
  2. 2.Wildlife Ecology LabUniversity of ChileSantiagoChile

Personalised recommendations