Advertisement

Wetlands Ecology and Management

, Volume 27, Issue 2–3, pp 267–281 | Cite as

Fine-scale effects of fire on non-woody species in a southern Amazonian seasonal wetland

  • Halina S. Jancoski
  • José Roberto R. Pinto
  • Denis S. Nogueira
  • Henrique A. Mews
  • Juan Carlo S. Abad
  • Marina C. Scalon
  • Beatriz S. MarimonEmail author
Original Paper

Abstract

Grasslands and wetlands are non-forested highly biodiverse ecosystems. Although fire is a major factor controlling and maintaining biodiversity in different landscapes of Central Brazil, there are still knowledge gaps about its effect on these systems. We compared composition, diversity and coverage of herbaceous and sub-shrub species in ‘campos de murundus’ (murundus fields) before and after recurrent fire events. We sampled and collected species in 32 subplots of 1 m2 within a 100 × 100 m plot, and compared species richness, diversity, frequency, and cover percentage before and after recurrent fires. Floristic composition was evaluated through multivariate dispersion analysis. Our results show that recurrent fires in murundus fields decreased species richness and modified the composition of herbaceous and sub-shrub (i.e., species with a woody base and soft shoots) species. However, species diversity either increased or was maintained, depending on the diversity index used. In addition, repeated fire events modified the coverage and increased the dominance of fire-tolerant species, such as Aristida pendula, over fire-sensitive ones, such as Eriocaulon burchellii, Eleocharis minima, Hyptis hygrobia, Scleria sp., Paspalum lineare, Piriqueta sp., Polygala celosioides and Sipanea biflora. These post-fire changes resulted in altered species composition, richness and soil cover. Generally, fire increased the amount of bare ground and, consequently, decreased species richness and species diversity.

Keywords

Fire Earthmound fields Murundus Araguaia river Pantanal Herbaceous Sub-shrub 

Notes

Acknowledgements

We acknowledge CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for HSJ scholarship and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the productivity Grant (PQ) to JRRP (307701/2014-0). We also thank FAPEMAT (Fundação de Amparo à Pesquisa do Estado de Mato Grosso) for funding the research in 2005 (0650/2006) and the Decanato de Pesquisa e Pós-graduação/Programa de Pós-Graduação em Ciências Florestais da Universidade de Brasília (UnB) for funding part of the research in 2008. To INMET (Instituto Nacional de Meteorologia) for providing climatological data from the Canarana-MT station and SEMA (Secretaria de Estado de Meio Ambiente de Mato Grosso) for granting the research license in the Araguaia State Park. Also, to all biologists who assisted us in the field: Herson S. Lima, Michele C. Moresco, Daniel D. Franczak, Bruno Jordão, Alexandro Solórzano and Pábio H. Porto. We also thank Fabricio A. Leal and Simone M. Reis for providing Figs. 3 and 4, respectively. Lastly, we thank the anonymous reviewers and the Editor for all suggestions and constructive criticism provided and Fabricius Domingos for proofreading the manuscript.

Funding

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for Halina Soares Jancoski scholarship. CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the productivity Grant (PQ) to José Roberto R. Pinto (307701/2014-0). And CNPq fellowship granted to Denis S. Nogueira. FAPEMAT (Fundação de Apoio à Pesquisa do Estado de Mato Grosso) for funding the research in 2005 (0650/2006).

References

  1. Allem AC, Valls JFM (1987) O fogo como elemento de manejo da pastagem. In: Allem AC, Valls JFM (eds) Recursos Forrageiros Nativos do Pantanal Mato-Grossense. Embrapa-Cenargen, Brasília, pp 189–197Google Scholar
  2. Andrew SM, Moe SR, Totland Ø, Munishi PKT (2012) Species composition and functional structure of herbaceous vegetation in a tropical wetland system. Biodivers Conserv 21:2865–2885CrossRefGoogle Scholar
  3. Andrew SM, Totland Ø, Moe SR (2014) Spatial variation in plant species richness and diversity along human disturbance and environmental gradients in a tropical wetland. Wetlands Ecol Manag 23(3):395–404CrossRefGoogle Scholar
  4. Apg IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and 775 families of flowering plants: APG IV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar
  5. Araújo Neto M, Furley PA, Haridasan M et al (1986) The murunduss of the cerrado region of Central Brazil. J Trop Ecol 2:17–35CrossRefGoogle Scholar
  6. Bond J, Parr CL (2010) Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol Conserv 143(10):2395–2404CrossRefGoogle Scholar
  7. Cardoso EL, Crispim SMA, Rodrigues CAG et al (2000) Biomassa aérea e produção primária do estrato herbáceo em campo de Elyonurus muticus submetido à queima anual no Pantanal. Pesq Agropec Bras 35(8):1501–1507CrossRefGoogle Scholar
  8. Chao A, Jost J (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecol 93:2533–2547CrossRefGoogle Scholar
  9. Chao A, Lee SM, Chen TC (1988) A generalized Good’s Nonparametric Coverage Estimator. Chin J Math 16:189–199Google Scholar
  10. Chao A, Gotelli N, Hsieh TC et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84(1):45–67CrossRefGoogle Scholar
  11. Collins SL, Smith MD (2006) Scale-dependent interaction of fire and grazing on community heterogeneity in Tallgrass Praire. Ecol 87(8):2058–2067CrossRefGoogle Scholar
  12. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B (Series B) 31:118–345Google Scholar
  13. Colwell RKA, Chao NJ, Gotelli SY et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5:3–21CrossRefGoogle Scholar
  14. Cunha CN, Piedade MTF, Junk WJ (2014) Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus macrohabitats. UFMT, CuiabáGoogle Scholar
  15. Fidelis A, Müller SC, Pillar VD, Pfadenhauer J (2010) Population biology and regeneration of forbs and shrubs after fire in Brazilian Campos grasslands. Plant Ecol 211:107–117CrossRefGoogle Scholar
  16. Filgueiras TS (2002) Herbaceous plant communities. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 121–139CrossRefGoogle Scholar
  17. Flora do Brasil 2020 (2017). Página inicial. http://floradobrasil.jbrj.gov.br. Accessed 07 Jan 2017
  18. Furley PA (1986) Classification and distribuition of murunduss in the Cerrado of Central Brazil. J Biogeogr 13:265–268CrossRefGoogle Scholar
  19. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391CrossRefGoogle Scholar
  20. GuilsonAV Ceron K, Elias GA et al (2016) Estrutura da vegetação herbácea em paisagens ciliares no sul de Santa Catarina, Brasil. Rev Ambient Água 11(3):650–664CrossRefGoogle Scholar
  21. Harrison S, Inouye BD, Safford HD (2003) Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conserv Biol 17(3):837–845CrossRefGoogle Scholar
  22. Heydari M, Faramarzi M, Pothier D (2016) Post-fire recovery of herbaceous species composition and diversity, and soil quality indicators 1 year after wildfire in a semi-arid oak woodland. Ecol Eng 94:688–697CrossRefGoogle Scholar
  23. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7(12):1451–1456CrossRefGoogle Scholar
  24. INMET. Instituto Nacional de Meteorologia (2009). Página inicial. http://www.inmet.gov.br Accessed 7 Jan 2009
  25. Junk WJ, Cunha CN (2012) Pasture clearing from invasive woody plants in the Pantanal: a tool for sustainable management or environmental destruction? Wetlands Ecol Manag 2:111–122CrossRefGoogle Scholar
  26. Junk WJ, Piedade MTF, Lourival R et al (2014) Brazilian wetlands: definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshw Ecosyst 24:5–22CrossRefGoogle Scholar
  27. Koerner SE, Collins SL (2014) Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecol 95(1):98–109CrossRefGoogle Scholar
  28. Lehmann CER et al (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–551.  https://doi.org/10.1126/science.1247355 CrossRefGoogle Scholar
  29. Marimon BS, Marimon Júnior BH, Lima H et al (2008) Pantanal do Araguaia: ambiente e povo. Universidade do Estado de Mato Grosso, Nova XavantinaGoogle Scholar
  30. Marimon BS, Marimon-Junior BH, Mews HA et al (2012) Florística dos campos de murunduss do Pantanal Araguaia, Mato Grosso, Brasil. Acta Bot Brasilica 26(1):181–196CrossRefGoogle Scholar
  31. Marimon BS, Colli GR, Marimon-Junior BH et al (2015) Ecology of floodplain campos de murunduss Savanna in Southern Amazonia. Int J Plant Sci 176(7):670–681.  https://doi.org/10.1086/682079 CrossRefGoogle Scholar
  32. Moreira MLC, Vasconcelos TNN (2007) Mato Grosso: solos e paisagens. Entrelinhas, CuiabáGoogle Scholar
  33. Muller SC, Waechter JL (2001) Estrutura sinusial dos componentes herbáceo e arbustivo de uma floresta costeira subtropical. Rev Bras Bot 24:263–272CrossRefGoogle Scholar
  34. Muller-Dombois D, Ellemberg H (1974) Aims and Methods of vegetation ecology. Wiley, New YorkGoogle Scholar
  35. Munhoz CBR, Felfili JM (2005) Fenologia do estrato herbáceo-subarbustivo de uma comunidade de campo sujo na Fazenda Água Limpa no Distrito Federal, Brasil. Acta Bot Bras 19(4):981–990CrossRefGoogle Scholar
  36. Munhoz CB, Felfili JM (2006) Fitossociologia do estrato herbáceo-subarbustivo de uma área de campo sujo no Distrito Federal, Brasil. Acta Bot Bras 20(3):671–685CrossRefGoogle Scholar
  37. Oksanen J et al (2016) vegan: Community Ecology package (2) 9. https://CRAN.R-project.org/pakage=vegan. Accessed 20 June 2016
  38. Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039CrossRefGoogle Scholar
  39. Olden JD, Rooney TP (2006) On defining and quantifying biotic homogenization. Glob Ecol Biogeogr 15:113–120CrossRefGoogle Scholar
  40. Oliveira-Filho AT (1992a) Floodplain “murundus” of Central Brazil: evidence for the termite-origin hypothesis. J Trop Ecol 8:1–19CrossRefGoogle Scholar
  41. Oliveira-Filho AT (1992b) The vegetation of Brazilian “murundus”—the island-effect on the plant community. J Trop Ecol 8:465–486CrossRefGoogle Scholar
  42. Oliveira-Filho AT, Furley PA (1990) Monchão, cocuruto, murundus. Cienc Hoje 61:30–37Google Scholar
  43. Overbeck GE, Martin EV, Scarano FR et al (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460CrossRefGoogle Scholar
  44. Paula A, Martins FQ, Portugal MA et al (2015) Riqueza, diversidade e composição florística em áreas de cerrado em regeneração e preservação na Estação Ecológica de Itirapina-SP. CI FL 25(1):231–238CrossRefGoogle Scholar
  45. Pott A, Pott VJ (1994) Plantas do Pantanal. Embrapa - CPAP/SPI, BrasíliaGoogle Scholar
  46. Pott VJ, Pott A (2000) Plantas Aquáticas do Pantanal. Embrapa - CPAP/SPI, BrasíliaGoogle Scholar
  47. Pozer CG, Nogueira F (2004) Flooded native pastures of the northern region of the Pantanal of Mato Grosso: biomass and primary productivity variations. Braz J Biol 64(4):859–866CrossRefGoogle Scholar
  48. R Development Team (2016) A language and environment for Statistical Computing. Foundation for Statistical Computing. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing. Accessed 20 June 2016
  49. Resende ILM, Araújo GM, Oliveira APA et al (2004) A comunidade vegetal e as características abióticas de um campo de murundus em Uberlândia, MG. Acta Bot Bras 18(1):9–17CrossRefGoogle Scholar
  50. Sabadin P, Goméz M, Ginocchio R, Peña I et al (2015) Effect of fire on herbaceous “matorral” vegetation of Central Chile. Cien Inv Agr 42(3):415–425CrossRefGoogle Scholar
  51. San José JJ, Fariñas MR (1991) Temporal changes in structure of Trachypogon savanna protected for 25 years. Acta Oecol 12(2):237–247Google Scholar
  52. Schmidt IB, Sampaio MB, Figueiredo IB et al (2011) Fogo e Artesanato de Capim-dourado no Jalapão—Usos Tradicionais e Consequências ecológicas. Bio Brasil 1(2):67–85Google Scholar
  53. Silva FAM, Assad ED, Evangelista BA (2008) Caracterização Climática do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa Informação Tecnológica, Brasília, pp 69–88Google Scholar
  54. Tews J, Brose U, Grimm V (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  55. Veldman JW, Buisson E, Durigan G (2015a) Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13(3):154–162CrossRefGoogle Scholar
  56. Veldman JW, Overbeck GE, Negreiros D (2015b) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Biosci J 65(10):1011–1018CrossRefGoogle Scholar
  57. Wenjin L, Xiaoan Z, Johannes MHK (2013) Different fire frequency impacts over 27 years on vegetation succession in an infertile old-field grassland. Rangeland Ecol Manag 66(3):267–273CrossRefGoogle Scholar
  58. Zar JH (1999) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Halina S. Jancoski
    • 1
  • José Roberto R. Pinto
    • 2
  • Denis S. Nogueira
    • 4
  • Henrique A. Mews
    • 3
  • Juan Carlo S. Abad
    • 1
  • Marina C. Scalon
    • 1
    • 5
  • Beatriz S. Marimon
    • 1
    Email author
  1. 1.Programa de Pós-graduação em Ecologia e ConservaçãoUniversidade do Estado de Mato GrossoNova XavantinaBrazil
  2. 2.Universidade de Brasília, Departamento de Engenharia FlorestalBrasíliaBrazil
  3. 3.Universidade Federal do Acre, Centro de Ciências Biológicas e da NaturezaRio BrancoBrazil
  4. 4.Instituto Federal de Mato GrossoPrimavera do LesteBrazil
  5. 5.Environmental Change Institute, School of Geography and the EnvironmentUniversity of OxfordOxfordUK

Personalised recommendations