Advertisement

Wetlands Ecology and Management

, Volume 27, Issue 2–3, pp 257–266 | Cite as

Effect of phosphorus and nitrogen on Sphagnum regeneration and growth: an experience from Patagonia

  • Carolina A. LeónEmail author
  • Melisa Neila-Pivet
  • Alfonso Benítez-Mora
  • Luis Lara
Original Paper

Abstract

Peatlands provide important ecosystem services which includes the production of fibers of Sphagnum moss that are used as a substrate in horticulture. Sphagnum fibers are greatly desired by international markets, resulting in an increase in their extraction, thus causing environmental deterioration through overexploitation, especially in Patagonian peatlands. Given this environmental problem, the present study aimed to evaluate the effect of the application of two fertilizers (NH4NO3 and NaH2PO4) on the regeneration and growth rate of Sphagnum magellanicum and Sphagnum falcatulum. An ex situ experiment was carried out in micro- and mesocosms extracted from three localities in Isla Grande de Chiloé, Los Lagos Region, Chile. The results reported that fertilization affects the development of Sphagnum moss, showing positive results on growth in height, while having a very limited effect on regeneration. Our data show a positive impact of some concentrations under natural climatic conditions. After three months, mesocosms with 10 g/m2 of NH4NO3 (3.5 g N/m2) for S. falcatulum, and 5 g/m2 of NaH2PO4 (1.3 g P/m2) for S. magellanicum, demonstrated statistically significant differences with respect to the control, with a mean growth of 15.2 mm and 5.6 mm respectively. According to the data, we can show that these treatments may be considered for the propagation of moss ex situ followed by reintroduction into the field. Field experiments are required to better understand the dynamics of nitrogen in Patagonian peatlands; nevertheless, these data suggest that attention be paid to nonpoint pollution of surface waters with nitrogen, because excessive inputs may have important effects on the growth of this natural resource.

Keywords

Sphagnum Growth Fertilization Nitrogen Phosphorus Chile 

Notes

Acknowledgements

The authors gratefully acknowledge the CONICYT Chile for funding the research. Special thanks to César González for his help in statistical analysis. We are very grateful to the reviewers for their constructive suggestions. This is a contribution to the Research Program of LTSER-Chile network at Senda Darwin Biological Station, Chiloé, Chile.

Funding

The research was funded by FONDECYT 11150275.

References

  1. Aerts R, Wallen B, Malmer N (1992) Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140.  https://doi.org/10.2307/2261070 CrossRefGoogle Scholar
  2. Baker RGE, Boatman DJ (1990) Some effects of nitrogen, phosphorus, potassium and carbon dioxide concentration on the morphology and vegetative reproduction of Sphagnum cuspidatum. Ehrh New Phytol 116:605–611.  https://doi.org/10.1111/j.1469-8137.1990.tb00545.x CrossRefGoogle Scholar
  3. Bragazza L et al (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389.  https://doi.org/10.1073/pnas.0606629104 CrossRefGoogle Scholar
  4. Bragazza L et al (2012) High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Glob Change Biol 18:1163–1172.  https://doi.org/10.1111/j.1365-2486.2011.02585.x CrossRefGoogle Scholar
  5. Breeuwer A, Heijmans M, Robroek B, Berendse F (2008) The effect of temperature on growth and competition between Sphagnum species. Oecologia 156:155–167.  https://doi.org/10.1007/s00442-008-0963-8 CrossRefGoogle Scholar
  6. Carmona MR et al (2010) Estación Biológica Senda Darwin: investigación ecológica de largo plazo en la interfase ciencia-sociedad. Revista Chilena de Historia Natural 83:113–142.  https://doi.org/10.4067/S0716-078X2010000100007 CrossRefGoogle Scholar
  7. Clymo R (1970) The growth of Sphagnum: methods of measurement. J Ecol 58:13–49.  https://doi.org/10.2307/2258168 CrossRefGoogle Scholar
  8. CONAF (2009) Plan de Acción Provincial Chiloé—Plan de Gestión Territorial. Oficina Provincial Chiloé - Corporación Nacional Forestal, Castro, ChileGoogle Scholar
  9. Daniels RE, Eddy A (1985) Handbook of European Sphagna. Institute of Terrestrial Ecology, Natural Environment Research Council, Great BritainGoogle Scholar
  10. Délano G, Oberpaur C, Díaz MF, Barba M, León CA, Iñiguez C, Délano M (2013) Guia de terreno: manejo y recolección sustentable de musgo pompón (Sphagnum magellanicum). Gobierno Regional de Los Lagos - Universidad Santo Tomás, Santiago de ChileGoogle Scholar
  11. di Castri F, Hajek ER (1976) Bioclimatología de Chile. Editorial Universidad Católica de Chile, Santiago, ChileGoogle Scholar
  12. Díaz MF, Silva W (2012) Improving harvesting techniques to ensure Sphagnum regeneration in Chilean peatlands. Chil J Agr Res 72:296–300.  https://doi.org/10.4067/S0718-58392012000200021 CrossRefGoogle Scholar
  13. Díaz MF, Larraín J, Zegers G, Tapia C (2008) Caracterización florística e hidrológica de turberas de la Isla Grande de Chiloé. Chile Revista Chilena de Historia Natural 81:445–468.  https://doi.org/10.4067/S0716-078X2008000400002 Google Scholar
  14. Díaz MF, Tapia C, Jiménez P, Bacigalupe LD (2012) Sphagnum magellanicum growth and productivity in Chilean anthropogenic peatlands. Revista Chilena de Historia Natural 85:513–518.  https://doi.org/10.4067/S0716-078X2012000400013 CrossRefGoogle Scholar
  15. Domínguez E (2014) Manual de buenas prácticas para el uso sostenido del musgo Sphagnum magellanicum en Magallanes, Chile vol Nº 276. Instituto de Investigaciones Agropecuarias. Centro Regional de Investigación Kampenaike, Punta Arenas, ChileGoogle Scholar
  16. Ferland C, Rochefort L (1997) Restoration techniques for Sphagnum-dominated peatlands. Can J Bot 75:1110–1118.  https://doi.org/10.1139/b97-122 CrossRefGoogle Scholar
  17. Fritz C, van Dijk G, Smolders AJP, Pancotto VA, Elzenga T, Roelofs JGM, Grootjans AP (2012) Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biol 14:491–499.  https://doi.org/10.1111/j.1438-8677.2011.00527.x CrossRefGoogle Scholar
  18. Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetlands Ecol Manag 11:109–119.  https://doi.org/10.1111/j.1438-8677.2011.00527.x CrossRefGoogle Scholar
  19. Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537.  https://doi.org/10.1046/j.1469-8137.2000.00717.x CrossRefGoogle Scholar
  20. Hassel K, Kyrkjeeide MO, Yousefi N, Prestø T, Stenøien HK, Shaw JA, Flatberg KI (2018) Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum. Brid J Bryol 40:197–222.  https://doi.org/10.1080/03736687.2018.1474424 CrossRefGoogle Scholar
  21. Hauser A (1996) Los depósitos de turba en Chile y sus perspectivas de utilización. Revista Geológica de Chile 23:217–229Google Scholar
  22. INFOR (2018) Productos forestales no madereros. Instituto ForestalGoogle Scholar
  23. Iturraspe R (2016) Patagonian Peatlands (Argentina and Chile). In: Finlayson CM, Milton GR, Prentice RC, Dacidson NC (eds) The wetland book II: distribution, description and conservation. Springer, Dordrecht, pp 1–10Google Scholar
  24. Joosten H, Clarke D (2002) Wise use of mires and peatlands. Background and principles including a framework for decision-making. International Mire Conservation Group & International Peat Society, Saarijarvi, FinlandGoogle Scholar
  25. Karlin EF, Buck WR, Seppelt RD, Boles SB, Jonathan Shaw A (2013) The double allopolyploid Sphagnum × falcatulum (Sphagnaceae) in Tierra del Fuego, a Holantarctic perspective. J Bryol 35:157–172.  https://doi.org/10.1179/1743282013y.0000000066 CrossRefGoogle Scholar
  26. León CA, Oliván G, Gaxiola A (2018) Environmental controls of cryptogam composition and diversity in anthropogenic and natural peatland ecosystems of Chilean Patagonia. Ecosystems 21:203–215.  https://doi.org/10.1007/s10021-017-0142-z CrossRefGoogle Scholar
  27. Mackenzie R, Lewis LR, Rozzi R (2016) Nuevo registro de Sphagnum falcatulum Besch (Sphagnaceae) en Isla Navarino. Reserva de la Biósfera Cabo de Hornos Anales del Instituto de la Patagonia 44:79–84.  https://doi.org/10.4067/S0718-686X2016000100007 Google Scholar
  28. Minayeva T (2008) Peatlands and Biodiversity. In: Parish F, Sirin A, Charman D, Joosten H, Minayeva T, Silvius M, Stringer L (eds) Assessment on peatlands, biodiversity and climate change: main report Global Environment Centre. Kuala Lumpur and Wetlands International, Wageningen, pp 60–97Google Scholar
  29. Ministerio de Agricultura (2017) Decreto N°25 - Dispone medidas para la protección del musgo Sphagnum magellanicum. Diario Oficial de la República de ChileGoogle Scholar
  30. ODEPA (2018) Exportaciones de musgos secos, distintos de los usados para ramos y adornos y de los medicinales. Código SACH 14049020. Estadísticas Comercio Exterior, Oficina de Estudios y Políticas Agrarias (ODEPA), Ministerio de Agricultura. http://www.odepa.cl/series-anuales-por-producto-de-exportaciones-importaciones/. Accessed 7 Feb 2018
  31. Paffen BGP, Roelofs JGM (1991) Impact of carbon dioxide and ammonium on the growth of submerged Sphagnum cuspidatum. Aquat Bot 40:61–71.  https://doi.org/10.1016/0304-3770(91)90074-F CrossRefGoogle Scholar
  32. Pérez CA, Armesto JJ, Torrealba C, Carmona MR (2003) Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile. Austral Ecol 28:591–600.  https://doi.org/10.1046/j.1442-9993.2003.01315.x CrossRefGoogle Scholar
  33. Quinty F, Rochefort L (2003) Peatland restoration guide, 2nd edn. Canadian Sphagnum Peat Moss Association et New Brunswick Department of Natural Resources and Energy, Québec, CanadaGoogle Scholar
  34. Ramsar (2004) Lineamientos para la acción mundial sobre las turberas. Manual 14. Manuales Ramsar para el uso racional de los humedales. Secretaría de la Convención de Ramsar, Gland, SuizaGoogle Scholar
  35. Rochefort L (2000) Sphagnum—a keystone genus in habitat restoration. The Bryologist 103:503–508CrossRefGoogle Scholar
  36. Rydin H, Jeglum JK (2006) The Biology of Peatlands. Biology of Habitats. Oxford University Press, LondonCrossRefGoogle Scholar
  37. Schlatter R, Schlatter J (2004) Los turbales de Chile. In: Blanco D, Balze Vdl (eds) Los Turbales de la Patagonia: Bases para su inventario y la conservación de su biodiversidad. Wetlands Internacional, Buenos Aires, Argentina, pp 75–80Google Scholar
  38. Sottocornola M, Boudreau S, Rochefort L (2007) Peat bog restoration: effect of phosphorus on plant re-establishment. Ecol Eng 31:29–40.  https://doi.org/10.1016/j.ecoleng.2007.05.001 CrossRefGoogle Scholar
  39. Taiwan Bureau of Foreign Trade (2018) Trade statistics. https://cus93.trade.gov.tw/FSCE030F/FSCE030F?menuURL=FSCE030F
  40. R Development Core Team (2017) A language and enviroment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  41. Temmink RJM et al (2017) Sphagnum farming in a eutrophic world: the importance of optimal nutrient stoichiometry. Ecol Eng 98:196–205.  https://doi.org/10.1016/j.ecoleng.2016.10.069 CrossRefGoogle Scholar
  42. Zegers G, Larraín J, Díaz MF, Armesto JJ (2006) Impacto ecológico y social de la explotación de pomponales y turberas de Sphagnum en la Isla Grande de Chiloé Revista. Ambiente y Desarrollo 22:28–34Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS)Universidad Bernardo O’HigginsSantiagoChile

Personalised recommendations