Wetlands Ecology and Management

, Volume 27, Issue 4, pp 455–463 | Cite as

Storage of blue carbon in isolated mangrove forests of the Galapagos’ rocky coast

  • Matthew T. CostaEmail author
  • Pelayo Salinas-de-León
  • Octavio Aburto-Oropeza
Original Paper


Threatened globally, mangrove forests provide many ecosystem services, including blue carbon storage. These forests, and the services that they provide, are distributed across spatio-temporally variable coastal landscapes and a range of environmental conditions, though this variability is underappreciated in the blue carbon literature. The Galapagos, Ecuador, presents the opportunity to explore spatial variability in carbon storage. This volcanically active archipelago features rocky shores and arid conditions at low elevations (< 500 mm/year), with patchy forests under far from optimal conditions. At 29 mangrove sites, we cored from the sediment surface down to basement rock, and samples were dried, weighed, and analyzed for their carbon content by GC–MS. Belowground carbon stocks range from < 50 Mg/ha to > 500 Mg/ha, i.e. from practically no carbon to values typical of lush, productive mangroves. This variability is driven principally by variation in sediment depth, with high inter-site variance associated with underlying lava substrate. The first to measure mangrove blue carbon in the Galapagos, this study reveals the spatial heterogeneity of the islands’ patchy mangroves. These results underscore the importance of local ecosystem constraints and natural variability in ecosystem service valuation for conservation prioritization.


Blue carbon Carbon storage Ecosystem service Galapagos Mangrove Spatial variability 



Financial support was provided by the Helmsley Charitable Trust and the International Community Foundation, and graduate fellowship support for M.T.C. by the National Science Foundation. We thank SIO and CDF staff, especially E. Rastoin, for facilitating travel and field logistics; J. J. Cota-Nieto and I. Mascarenas for fieldwork; K. Laface and E. Navarro for lab assistance; and E. Cleland and J. Leichter for providing useful comments on the manuscript. Sediment samples were collected and exported from Ecuador using the Ministerio del Ambiente permit 054-2015 DPNG. The data in this paper are available in the Supplementary Material.


Financial support was provided by the Helmsley Charitable Trust and the International Community Foundation, and graduate fellowship support for M.T.C. by the National Science Foundation.

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11273_2019_9653_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 56 kb)


  1. Aburto-Oropeza O, Ezcurra E, Danemann G, Valdez V, Murray J, Sala E (2008) Mangroves in the Gulf of California increase fishery yields. PNAS 105:10456–10459CrossRefGoogle Scholar
  2. Adame MF, Kauffman JB, Medina I, Gamboa JN, Torres O, Caamal JP et al (2013) Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS ONE 8:e56569. CrossRefGoogle Scholar
  3. Bouillon S, Borges AV, Castañeda-Moya A, Diele K, Dittmar T, Duke NC et al (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:GB2013. CrossRefGoogle Scholar
  4. Chapman VJ (1976) Mangrove vegetation. Strauss & Cramer, LeutershausenGoogle Scholar
  5. Chmura GL, Anisfield SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17(4):1111. CrossRefGoogle Scholar
  6. Cintrón G, Lugo AE, Pool DJ, Morris G (1978) Mangroves of arid environments in Puerto Rico and adjacent islands. Biotropica 10(2):110–121CrossRefGoogle Scholar
  7. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I et al (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:152–158CrossRefGoogle Scholar
  8. d’Ozouville N, Auken E, Sorensen K, Violette S, de Marsily G, Deffontaines B, Merlen G (2008) Extensive perched aquifer and structural implications revealed by 3D resistivity mapping in a Galapagos volcano. Earth Planet Sci Lett 269:518–522CrossRefGoogle Scholar
  9. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Manninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297CrossRefGoogle Scholar
  10. Duke NC (1992) Mangrove floristics and biogeography. In: Robertson AI, Alongi DM (eds) Coastal and estuarine studies. American Geophysical Union, Washington, DC, pp 63–100Google Scholar
  11. Dvorak M, Vargas H, Fessl B, Tebbich S (2004) On the verge of extinction: a survey of the mangrove finch Cactospiza heliobates and its habitat on the Galápagos Islands. Oryx 38(2):171–179CrossRefGoogle Scholar
  12. Ewel KC, Twilley RR, Ong JE (1998) Different kinds of mangrove forests provide different goods and services. Glob Ecol Biogeogr Lett 7:83–94CrossRefGoogle Scholar
  13. Ezcurra P, Ezcurra E, Garcillán PP, Costa MT, Aburto-Oropeza O (2016) Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. PNAS 113(16):4404–4409CrossRefGoogle Scholar
  14. Hamilton SE, Lovette J (2015) Ecuador’s mangrove forest carbon stocks: a spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquiculture. PLoS ONE 10(3):e0118880. CrossRefGoogle Scholar
  15. Hogarth PJ (1999) The biology of mangroves. Oxford University Press Inc, New YorkGoogle Scholar
  16. Howmiller R, Weiner A (1968) A limnological study of a mangrove lagoon in the Galapagos. Ecology 49(6):1184–1186CrossRefGoogle Scholar
  17. INGALA, PRONAREG, ORSTOM (1989) Inventario cartográfico de los recursos naturales, geomorfología, vegetación, hídricos, ecológicos y biofísicos de las Islas Galápagos, Ecuador. 1:100,000 maps. INGALA, QuitoGoogle Scholar
  18. Jardine SL, Siikamäki JV (2014) A global predictive model of carbon in mangrove soils. Environ Res Lett 9:104013. CrossRefGoogle Scholar
  19. McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556CrossRefGoogle Scholar
  20. Moity N, Delgado B, Salinas-de-León P (2019) Mangroves in the Galapagos islands: distribution and dynamics. PLOS ONE 14(1):e0209313.
  21. Nelleman C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (eds) (2009) Blue carbon: a rapid response assessment. United Nations Environment Programme, GRID-Arendal, ArendalGoogle Scholar
  22. Odum WE, Heald EJ (1975) The detritus-based food web of an estuarine mangrove community. In: Cronin LE (ed) Estuarine research, vol I. chemistry, biology, and the estuarine system. Academic Press Inc., New York, pp 265–286Google Scholar
  23. Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica. Biotropica 9:195–212CrossRefGoogle Scholar
  24. Ramnarine R, Voroney RP, Wagner-Riddle C, Dunfield KE (2011) Carbonate removal by acid fumigation for measuring the δ13C of soil organic carbon. Can J Soil Sci 91:247–250CrossRefGoogle Scholar
  25. Rivera-Monroy VH, Lee SY, Kristensen E, Twilley RR (eds) (2017) Mangrove ecosystems: a global biogeographic perspective. Springer, ChamGoogle Scholar
  26. Rowland SK (1996) Slopes, lava flow volumes, and vent distributions on Volcán Fernandina, Galápagos Islands. J Geophys Res 101(B12):27657–27672CrossRefGoogle Scholar
  27. Song C, White BL, Heumann BW (2011) Hyperspectral remote sensing of salinity stress on red (Rhizophora mangle) and white (Laguncularia racemosa) mangroves on Galapagos Islands. Remote Sens Lett 2(3):221–230CrossRefGoogle Scholar
  28. Stoddart DR (1980) Mangroves as successional stages, inner reefs of the northern Great Barrier Reef. J Biogeogr 7:269–284CrossRefGoogle Scholar
  29. Tanner MK, Moity N, Costa MT, Jarrin JM, Aburto-Oropeza O, Salinas-de-León P (in press) Mangroves in the Galapagos: ecosystem services and their valuation. Ecol EconGoogle Scholar
  30. Thom BG (1967) Mangrove ecology and deltaic geomorphology: tabasco, Mexico. J Ecol 55(2):301–343CrossRefGoogle Scholar
  31. Thomas S (2014) Blue carbon: knowledge gaps, critical issues, and novel approaches. Ecol Econ 107:22–38CrossRefGoogle Scholar
  32. Trueman M, d’Ozouville N (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res 67:26–37Google Scholar
  33. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. BioScience 51(10):807–815CrossRefGoogle Scholar
  34. Wiggins IL, Porter DM (1971) Flora of the Galápagos Islands. Stanford University Press, StanfordGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Aburto-Oropeza Lab, Scripps Institution of OceanographyUCSDLa JollaUSA
  2. 2.Charles Darwin Research StationCharles Darwin FoundationPuerto AyoraEcuador

Personalised recommendations