Advertisement

Wetlands Ecology and Management

, Volume 27, Issue 1, pp 87–102 | Cite as

Estimation of above-ground biomass of reed (Phragmites communis) based on in situ hyperspectral data in Beijing Hanshiqiao Wetland, China

  • Wei Li
  • Zhiguo Dou
  • Yan Wang
  • Gaojie Wu
  • Manyin Zhang
  • Yinru Lei
  • Yunmei Ping
  • Jiachen Wang
  • Lijuan CuiEmail author
  • Wu Ma
Original Paper

Abstract

Accurate estimates of reed (Phragmites communis) biomass are critical for efficient reed swamp monitoring and management. This study compared the accuracy of commonly used empirical models in estimating above-ground biomass in dense swamp reeds in the Beijing Hanshiqiao Wetland Nature Reserve, northern China. Two-thirds of the samples were used for model construction, and one-third for model validation. Models for estimating reed above-ground biomass, based on original spectral reflectance, first-order differential spectrum, trilateral parameters and partial least squares (PLS), were constructed using univariate linear regression and the PLS method. Results showed that the biomass estimation model based on the first-order differential spectrum was relatively inefficient. Model accuracy was highest in the PLS model, followed by the original spectral reflectance model and was lowest in the trilateral parameters model. The model validation results were consistent with the accuracy of the established estimation model, so the model has good stability. We conclude that above-ground biomass can be successfully estimated using canopy hyperspectral information on wetland plants, based on the empirical model. The PLS method not only was more accurate in estimating fresh biomass but also represented a significant improvement in estimating dry biomass.

Keywords

Hyperspectral Swamp wetlan Emergent vegetation Biomass Empirical model 

Notes

Acknowledgments

This study was funded by China’s Special Fund for Basic Scientific Research Business of Central Public Research Institutes (Grant No. CAFYBB2017MA028). The authors acknowledge Zhangjie Cai, Di Huang, Rumiao Wang, Yilan Huang and Huibo Xu for their contribution to the fieldwork and thank Xin Tian, Xianzhao Liu, Dan Zhao and Guangcai Xu for guidance in thesis writing.

Funding

Work conducted by China’s Special Fund for Basic Scientific Research Business of Central Public Research Institutes (Grant No. CAFYBB2017MA028).

References

  1. Abdel-Rahman EM, Mutanga O, Odindi J, Adam E, Odindo A, Ismail R (2014) A comparison of partial least squares (PLS) and sparse PLS regressions for predicting yield of swiss chard grown under different irrigation water sources using hyperspectral data. Comput Electron Agric 106:11–19.  https://doi.org/10.1016/j.compag.2014.05.001 CrossRefGoogle Scholar
  2. Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manag 18:281–296.  https://doi.org/10.1007/s11273-009-9169-z CrossRefGoogle Scholar
  3. Adam E, Mutanga O, Abdel-Rahman EM, Ismail R (2014) Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens 35:693–714.  https://doi.org/10.1080/01431161.2013.870676 CrossRefGoogle Scholar
  4. Aslan A, Rahman AF, Warren MW, Robeson SM (2016) Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sens Environ 183:65–81.  https://doi.org/10.1016/j.rse.2016.04.026 CrossRefGoogle Scholar
  5. Baek SL, Kenneth CM, Christian HF (2011) Identification and quantification of aquatic vegetation with hyperspectral remote sensing in western Nevada Rivers, USA. Int J Remote Sens 32:9093–9117.  https://doi.org/10.1080/01431161.2010.549850 CrossRefGoogle Scholar
  6. Barducci A, Guzzi D, Marcoionni P, Pippi I (2009) Aerospace wetland monitoring by hyperspectral imaging sensors: a case study in the coastal zone of San Rossore Natural Park. J Environ Manag 90:2278–2286.  https://doi.org/10.1016/j.jenvman.2007.06.033 CrossRefGoogle Scholar
  7. Behmann J, Steinrücken J, Plümer L (2014) Detection of early plant stress responses in hyperspectral images. ISPRS J Photogramm Remote Sens 93:98–111.  https://doi.org/10.1016/j.isprsjprs.2014.03.016 CrossRefGoogle Scholar
  8. Bendig JV (2015) Unmanned aerial vehicles (UAVs) for multi-temporal crop surface modelling: A new method for plant height and biomass estimation based on RGB-imaging. PhD thesis, der University of Cologne, Cologne, 12.01.2015Google Scholar
  9. Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp ML, Bareth G (2015) Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs 39:79–87.  https://doi.org/10.1016/j.jag.2015.02.012 CrossRefGoogle Scholar
  10. Byrd KB, O’Connell JL, Tommaso SD, Kelly M (2014) Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sens Environ 149:166–180.  https://doi.org/10.1016/j.rse.2014.04.003 CrossRefGoogle Scholar
  11. Castillo JAA, Apan A, Maraseni TN, Salmo S (2017) Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J Photogramm Remote Sens 134:70–85.  https://doi.org/10.1016/j.isprsjprs.2017.10.016 CrossRefGoogle Scholar
  12. Cho MA, Skidmore AK (2006) A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ 101:181–193.  https://doi.org/10.1016/j.rse.2005.12.011 CrossRefGoogle Scholar
  13. Cho MA, Skidmore AK, Corsi F, Wieren SEV, Sobhan I (2007) Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J App Earth Obs 9:414–424.  https://doi.org/10.1016/j.jag.2007.02.001 CrossRefGoogle Scholar
  14. Cui L, Zhang M, Li W, Lei Y, Ma M, Mao X, Xiao H, Zhao X (2017) Understanding Wetlands. Popular Science Press, Beijing. ISBN 978-7-110-09477-8Google Scholar
  15. Dalponte M, Frizzera L, Ørka HO, Gobakken T, Næsset E, Gianelle D (2018) Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecol Indic 85:367–376.  https://doi.org/10.1016/j.ecolind.2017.10.066 CrossRefGoogle Scholar
  16. Damm A, Paul-Limoges E, Haghighi E, Simmer C, Morsdorf F, Schneider FD, van der Tol C, Migliavacca M, Rascher U (2018) Remote sensing of plant-water relations: an overview and future perspectives. J Plant Physiol 227:3–19.  https://doi.org/10.1016/j.jplph.2018.04.012 CrossRefPubMedGoogle Scholar
  17. Daoust RJ, Childers DL (1998) Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a non-destructive phenometric technique. Aquat Bot 62:115–133.  https://doi.org/10.1016/S0304-3770(98)00078-3 CrossRefGoogle Scholar
  18. Dawson TP, Curran PJ (1998) Technical note a new technique for interpolating the reflectance red edge position. Int J Remote Sens 19:2133–2139.  https://doi.org/10.1080/014311698214910 CrossRefGoogle Scholar
  19. Delegido J, Verrelst J, Meza CM, Rivera JP, Alonso L, Moreno J (2013) A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur J Agron 46:42–52.  https://doi.org/10.1016/j.eja.2012.12.001 CrossRefGoogle Scholar
  20. Demetriades-Shah TH, Steven MD, Clark JA (1990) High resolution derivative spectra in remote sensing. Remote Sens Environ 3:55–64.  https://doi.org/10.1016/0034-4257(90)90055-Q CrossRefGoogle Scholar
  21. Dou Z, Cui L, Li J, Zhu Y, Gao C, Pan X, Lei Y, Zhang M, Zhao X, Li W (2018) Hyperspectral estimation of the chlorophyll content in short-term and long-term restorations of mangrove in Quanzhou Bay Estuary, China. Sustainability 10:1127.  https://doi.org/10.3390/su10041127 CrossRefGoogle Scholar
  22. Dronova I (2015) Object-based image analysis in wetland research: a review. Remote Sens 7:6380–6413.  https://doi.org/10.3390/rs70506380 CrossRefGoogle Scholar
  23. Everitt JH, Escobar DE, Richardson AJ (1990) Estimating grassland phytomass production with near-infrared and mid-infrared spectral variables. Remote Sens Environ 30:257–261.  https://doi.org/10.1016/0034-4257(89)90067-9 CrossRefGoogle Scholar
  24. Fu W, Wu Y (2011) Estimation of aboveground biomass of different mangrove trees based on canopy diameter and tree height. Procedia Environ Sci 10:2189–2194.  https://doi.org/10.1016/j.proenv.2011.09.343 CrossRefGoogle Scholar
  25. Gao Y, Li Q, Wang S, Gao J (2018) Adaptive neural network based on segmented particle swarm optimization for remote-sensing estimations of vegetation biomass. Remote Sens Environ 211:248–260.  https://doi.org/10.1016/j.rse.2018.04.026 CrossRefGoogle Scholar
  26. Gatebe CK, King MD (2016) Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications. Remote Sens Environ 179:131–148.  https://doi.org/10.1016/j.rse.2016.03.029 CrossRefGoogle Scholar
  27. Ge S, Xu M, Anderson GL, Carruthers RI (2007) Estimating Yellow Starthistle (Centaurea solstitialis) leaf area index and aboveground biomass with the use of hyperspectral data. Weed Sci 55:671–678.  https://doi.org/10.1614/WS-06-212.1 CrossRefGoogle Scholar
  28. Ghosh S, Mishra DR, Gitelson AA (2016) Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico - A methodological approach using MODIS. Remote Sens Environ 173:39–58.  https://doi.org/10.1016/j.rse.2015.11.015 CrossRefGoogle Scholar
  29. Gnyp ML, Miao Y, Yuan F, Ustin SL, Yu K, Yao Y, Huang S, Bareth G (2014) Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crop Res 155:42–55.  https://doi.org/10.1016/j.fcr.2013.09.023 CrossRefGoogle Scholar
  30. Govender M, Chetty K, Bulcock H (2007) A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 33:145–151.  https://doi.org/10.4314/wsa.v33i2.49049 Google Scholar
  31. Guo M, Li J, Sheng C, Xu J, Wu L (2017) A review of wetland remote sensing. Sensors 17:777.  https://doi.org/10.3390/s17040777 CrossRefGoogle Scholar
  32. Gupta AD, Sarkar S, Ghosh P, Saha T, Sil AK (2016) Phosphorous dynamics of the aquatic system constitutes an important axis for waste water purification in natural treatment pond(s) in East kolkata Wetlands. Ecol Eng 90:63–67.  https://doi.org/10.1016/j.ecoleng.2016.01.056 CrossRefGoogle Scholar
  33. Hestir EL, Khanna S, Andrew ME, Santos MJ, Viers JH, Greenberg JA, Rajapakse SS, Ustin SL (2008) Identification of invasive vegetation using hyperspectral remote sensing in the california delta ecosystem. Remote Sens Environ 112:4034–4047.  https://doi.org/10.1016/j.rse.2008.01.022 CrossRefGoogle Scholar
  34. Hestir EL, Brando VE, Bresciani M, Giardino C, Matta E, Villa P, Dekker AG (2015) Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. Remote Sens Environ 167:181–195.  https://doi.org/10.1016/j.rse.2015.05.023 CrossRefGoogle Scholar
  35. Horning N (2018) Remote sensing. Reference Module Earth Syst. Environ Sci.  https://doi.org/10.1016/B978-0-12-409548-9.10607-4 Google Scholar
  36. Hu L, Hu C, Ming-Xia HE (2017) Remote estimation of biomass of Ulva prolifera, macroalgae in the Yellow Sea. Remote Sens Environ 192:217–227.  https://doi.org/10.1016/j.rse.2017.01.037 CrossRefGoogle Scholar
  37. Huang C, Ye X, Deng C, Zhang Z, Wan Z (2016) Mapping above-ground biomass by integrating optical and SAR imagery: a case study of Xixi National Wetland Park, China. Remote Sens 8:647.  https://doi.org/10.3390/rs8080647 CrossRefGoogle Scholar
  38. Ihse M, Graneli W (1985) Estimation of reed (phragmites australis) biomass through spectral reflectance measurements. Biomass 8:59–79.  https://doi.org/10.1016/0144-4565(85)90035-6 CrossRefGoogle Scholar
  39. Imanishi J, Sugimoto K, Morimoto Y (2004) Detecting drought status and lai of two quercus species canopies using derivative spectra. Comput Electron Agr 43:109–129.  https://doi.org/10.1016/j.compag.2003.12.001 CrossRefGoogle Scholar
  40. Inoue Y, Sakaiya E, Zhu Y, Takahashi W (2012) Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens Environ 126:210–221.  https://doi.org/10.1016/j.rse.2012.08.026 CrossRefGoogle Scholar
  41. Ishihama F, Watabe Y, Oguma H (2012) Validation of a high-resolution, remotely operated aerial remote-sensing system for the identification of herbaceous plant species. Appl Veg Sci 15:383–389.  https://doi.org/10.1111/j.1654-109X.2012.01184.x CrossRefGoogle Scholar
  42. Jin J, Kumar L, Li Z, Feng H, Xu X, Yang G, Wang J (2018) A review of data assimilation of remote sensing and crop models. Eur J Agron 92:141–152.  https://doi.org/10.1016/j.eja.2017.11.002 CrossRefGoogle Scholar
  43. Jing R, Gong Z, Zhao W, Pu R, Deng L (2017) Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform - A case study in Wild Duck Lake Wetland, Beijing, China. ISPRS J Photogramm Remote Sens 134:122–134.  https://doi.org/10.1016/j.isprsjprs.2017.11.002 CrossRefGoogle Scholar
  44. Jollineau MY, Howarth PJ (2008) Mapping an inland wetland complex using hyperspectral imagery. Int J Remote Sens 29:3609–3631.  https://doi.org/10.1080/01431160701469099 CrossRefGoogle Scholar
  45. Kopačková V, Mišurec J, Lhotáková Z, Oulehle F, Albrechtová J (2014) Using multi-date high spectral resolution data to assess the physiological status of macroscopically undamaged foliage on a regional scale. Int J Appl Earth Obs 27:169–186.  https://doi.org/10.1016/j.jag.2013.09.009 CrossRefGoogle Scholar
  46. Lauck M, Benscoter B (2015) Non-destructive estimation of aboveground biomass in sawgrass communities of the Florida Everglades. Wetlands 35:207–210.  https://doi.org/10.1007/s13157-014-0596-0 CrossRefGoogle Scholar
  47. Lu S, Shimizu Y, Ishii J, Funakoshi S, Washitani I, Omasa K (2009) Estimation of abundance and distribution of two moist tall grasses in the Watarase wetland, Japan, using hyperspectral imagery. ISPRS J. Photogramm. Remote Sens 64:674–682.  https://doi.org/10.1016/j.isprsjprs.2009.06.003 CrossRefGoogle Scholar
  48. Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2014) A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int J Digit Earth 9:1–43.  https://doi.org/10.1080/17538947.2014.990526 Google Scholar
  49. Luo S, Wang C, Xi X, Pan F, Qian M, Peng D, Nie S, Qin H, Lin Y (2017) Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. Int J Appl Earth Obs 58:107–117.  https://doi.org/10.1016/j.jag.2017.01.016 CrossRefGoogle Scholar
  50. Martínez-Guijarro R, Pachés M, Ferrer J, Seco A (2018) Model performance of partial least squares in utilizing the visible spectroscopy data for estimation of algal biomass in a photobioreactor. Environ Technol Innov 10:122–131.  https://doi.org/10.1016/j.eti.2018.01.005 CrossRefGoogle Scholar
  51. Meyer H, Lehnert LW, Wang Y, Reudenbach C, Nauss T, Bendix J (2017) From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: do we need hyperspectral information? Int J App Earth Obs 55:21–31.  https://doi.org/10.1016/j.jag.2016.10.001 CrossRefGoogle Scholar
  52. Minh DHT, Toan TL, Rocca F, Tebaldini S, Villard L, Réjou-Méchain M, Phillips OL, Feldpausch TR, Dubois-Fernandez P, Scipal K, Chave J (2016) SAR tomography for the retrieval of forest biomass and height: cross-validation at two tropical forest sites in french guiana. Remote Sens Environ 175:138–147.  https://doi.org/10.1016/j.rse.2015.12.037 CrossRefGoogle Scholar
  53. Mitsch WJ, Gosselink JG (2017) Wetlands, 5th edn. Wiley, New York. ISBN 1118676823Google Scholar
  54. Moreau S, Bosseno R, Xing FG, Baret F (2003) Assessing the biomass dynamics of Andean bofedal, and totora, high-protein wetland grasses from NOAA/AVHRR. Remote Sens Environ 85:516–529.  https://doi.org/10.1016/S0034-4257(03)00053-1 CrossRefGoogle Scholar
  55. Mutanga O, Adam E, Cho MA (2012) High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int J App Earth Obs 18:399–406.  https://doi.org/10.1016/j.jag.2012.03.012 CrossRefGoogle Scholar
  56. Nakai Y, Hosoi F, Omasa K (2010) Estimation of coniferous tree biomass using airborne LiDAR and passive optical remote sensing. J Agric Meteorol 66:111–116.  https://doi.org/10.2480/agrmet.66.2.4 CrossRefGoogle Scholar
  57. Nelson R, Margolis H, Montesano P, Sun G, Cook B, Corp L, Andersen H, deJong B, Pellat FP, Fickel T, Kauffman J, Prisley S (2017) Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sens Environ 188:127–140.  https://doi.org/10.1016/j.rse.2016.10.038 CrossRefGoogle Scholar
  58. Owers CJ, Rogers K, Woodroffe CD (2018) Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuar Coast Shelf Sci 204:164–176.  https://doi.org/10.1016/j.ecss.2018.02.027 CrossRefGoogle Scholar
  59. Pacini N, Hesslerová P, Pokorný J, Mwinami T, Morrison EHJ, Cook AA, Zhang S, Harper DM (2018) Papyrus as an ecohydrological tool for restoring ecosystem services in afro-tropical wetlands. Ecohydrol Hydrobiol 18:142–154.  https://doi.org/10.1016/j.ecohyd.2018.02.001 CrossRefGoogle Scholar
  60. Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J (2008) Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ 112:3413–3425.  https://doi.org/10.1016/j.rse.2007.09.017 CrossRefGoogle Scholar
  61. Prasad ST, John GL, Alfredo H (2012) Hyperspectral remote sensing of vegetation. Taylor & Francis Group: AbingdonGoogle Scholar
  62. Ren H, Zhou G, Zhang X (2011) Estimation of green aboveground biomass of desert steppe in inner mongolia based on red-edge reflectance curve area method. Biosyst Eng 109:385–395.  https://doi.org/10.1016/j.biosystemseng.2011.05.004 CrossRefGoogle Scholar
  63. Richardson AJ, Wiegand CL, Arkin GF, Nixon PR, Gerbermann AH (1982) Remotely-sensed spectral indicators of sorghum development and their use in growth modeling. Agric Meteorol 26:11–23.  https://doi.org/10.1016/0002-1571(82)90054-1 CrossRefGoogle Scholar
  64. Roelfsema CM, Lyons M, Kovacs EM, Maxwell P, Saunders MI, Samper-Villarreal J, Phinn SR (2014) Multi-temporal mapping of seagrass cover, species and biomass: a semi-automated object based image analysis approach. Remote Sens Environ 150:172–187.  https://doi.org/10.1038/sdata.2015.40 CrossRefGoogle Scholar
  65. Sarrazin MJD, van Aardt JAN, Asner GP, McGlinchy J, Messinger DW, Wu J (2012) Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems. Can J Remote Sens 37:653–665.  https://doi.org/10.5589/m12-007 CrossRefGoogle Scholar
  66. Schultz RE, Pett L (2017) Plant community effects on CH4, fluxes, root surface area, and carbon storage in experimental wetlands. Ecol Eng 114:96–103.  https://doi.org/10.1016/j.ecoleng.2017.06.027 CrossRefGoogle Scholar
  67. Siciliano D, Wasson K, Potts DC, Olsen R (2008) Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment. Remote Sens Environ 112:4020–4033.  https://doi.org/10.1016/j.rse.2008.05.019 CrossRefGoogle Scholar
  68. Stratoulias D, Balzter H, Zlinszky A, Tóth VR (2015) Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. Remote Sens Environ 157:72–84.  https://doi.org/10.1016/j.rse.2014.05.021 CrossRefGoogle Scholar
  69. Tanka PK, Poul EL, Carl CH, Lars E (2018) Complete annual CO2, CH4, and N2O balance of a temperate riparian wetland 12 years after re wetting. Ecol Eng.  https://doi.org/10.1016/j.ecoleng.2017.12.019 Google Scholar
  70. Tilley DR, Ahmed M, Ji HS, Badrinarayanan H (2003) Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol Eng 21:153–163.  https://doi.org/10.1016/j.ecoleng.2003.10.004 CrossRefGoogle Scholar
  71. Tsai F, Philpot W (1998) Derivative analysis of hyperspectral data. Remote Sens Environ 66:41–51.  https://doi.org/10.1117/12.262471 CrossRefGoogle Scholar
  72. Wang FM, Huang JF, Wang XZ (2008) Identification of optimal hyperspectral bands for estimation of rice biophysical parameters. J Integr Plant Biol 50:291–299.  https://doi.org/10.1111/j.1744-7909.2007.00619.x CrossRefPubMedGoogle Scholar
  73. Wang L, Zhou X, Zhu X, Dong Z, Guo W (2016) Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J 4:212–219.  https://doi.org/10.1016/j.cj.2016.01.008 CrossRefGoogle Scholar
  74. White DA, Visser JM (2016) Water quality change in the mississippi river, including a warming river, explains decades of wetland plant biomass change within its balize delta. Aquat Bot 132:5–11.  https://doi.org/10.1016/j.aquabot.2016.02.007 CrossRefGoogle Scholar
  75. Yang S, Feng Q, Liang T, Liu B, Xie H (2018) Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens Environ 204:448–455.  https://doi.org/10.1016/j.rse.2017.10.011 CrossRefGoogle Scholar
  76. Zeng L, Chen C (2018) Using remote sensing to estimate forage biomass and nutrient contents at different growth stages. Biomass Bioenerg 115:74–81.  https://doi.org/10.1016/j.biombioe.2018.04.016 CrossRefGoogle Scholar
  77. Zhao YW, Liu YX, Wu SR, Li ZM, Zhang Y, Qin Y, Yin XA (2016) Construction and application of an aquatic ecological model for an emergent-macrophyte-dominated wetland: a case of hanshiqiao wetland. Ecol Eng 96:214–223.  https://doi.org/10.1016/j.ecoleng.2015.12.032 CrossRefGoogle Scholar
  78. Zhu L, Chen Z, Wang J, Ding J, Yu Y, Li J, Xiao N, Jiang L, Zheng Y, Rimmington GM (2014) Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance. Mar Pollut Bull 86:332–341.  https://doi.org/10.1016/j.marpolbul.2014.06.046 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Wetland Research, Chinese Academy of ForestryBeijingChina
  2. 2.Beijing Key Laboratory of Wetland Services and RestorationBeijingChina
  3. 3.Beijing Hanshiqiao National Wetland, Ecosystem Research StationBeijingChina
  4. 4.Nanjing Institute of Environmental Science of the Ministry of Environmental ProtectionNanjingChina
  5. 5.School of Natural ResourcesWest Virginia UniversityMorgantownUSA

Personalised recommendations