Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cytotoxic, Genotoxic, Mutagenic, and Phytotoxic Effects of the Extracts from Eragrostis plana Nees, 1841 (Poaceae), Grown in a Coal-Contaminated Region

Abstract

Coal and its byproducts and mineral waste constitute complex mixtures, which contain a variety of chemical compounds that impact the ecosystems. For this reason, procedures are required to monitor coal-degraded areas, including the use of biomonitoring organisms. In this light, the aim of the present study was to evaluate the cytotoxicity, genotoxicity, mutagenicity, and phytotoxicity of the aerial part and root extracts from Eragrostis plana Nees collected in the surroundings of the Thermoelectric Power Plant President Médici-UTPM (Candiota, Brazil), through Allium cepa bioassay. Cytotoxicity, genotoxicity, and mutagenicity in the A. cepa meristematic cells were verified through the mitotic index (MI), chromosomal alterations, and micronucleus formation, respectively. In addition, the germination rate, vigor index, and morphological abnormalities were verified in A. cepa seedlings. Treatment with root extracts from E. plana (ACR) specimens collected in a coal-contaminated region resulted in the lowest MI values (8.9%, 12.7%, and 16.0%), representing the most cytotoxic effect when compared with the negative control—NC (dH2O) (MI = 35.8%). ACR extract also was the most genotoxic and mutagenic sample compared with NC and other treatments. Phytotoxicity analyses corroborated the toxic action of ACR, presenting abnormal seedlings and change in vigor index. The high concentration of dissolved total chlorides and electrical conductivity presented in the root extracts of E. plana, which were grown in the carboniferous region, indicates an increase in the absorption of metallic ions and organic compound and supports the hypothesis that this species has bioaccumulator potential, being a new biomonitor model of coal-contaminated region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Artico, L. L., Kommling, G., Migita, N. A., & Menezes, A. P. S. (2018). Toxicological effects of surface water exposed to coal contamination on the test system Allium cepa. Water, Air, & Soil Pollution. https://doi.org/10.1007/s11270-018-3904-0.

  2. Beyersmann, D., Hartwig, A. (2008). Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology. https://doi.org/10.1007/s00204-008-0313-y.

  3. Cecchin, K., Favaretto, A., Bertol, C. D., Scheffer-Basso, S. M., Bertol, C. D., & Chini, S. O. (2017). Allelopathy and allelochemicals of Eragrostis plana (Poaceae) and its relation with phenology and nitrogen fertilization. Planta daninha. https://doi.org/10.1590/s0100-83582017350100028.

  4. Divan-Junior, A. M., Oliveira, P. L., Perry, C. T., Atz, V. L., Azzarini-Rostirola, L. N., & Raya-Rodriguez, M. T. (2009). Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2009.01.004.

  5. Ennever, F. K., Andreano, G., & Rosenkranz, H. S. (1988). The ability of plant assays to predict carcinogenicity. Mutation Research/Genetic Toxicology, 205(1), 99–105.

  6. Favaretto, A., Scheffer-Basso, S. M., & Perez, N. B. (2018). Allelopathy in Poaceae species present in Brazil. A review. Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-018-0495-5.

  7. FUNASA. (2014). Manual de Procedimentos Para Amostragem e Análise Físico-Química de Água - manual of procedures for sampling and physical-chemical analysis of water. National Health Foundation http://www.funasa.gov.br/site/wp-content/files_mf/manual_pratico_de_analise_de_agua_2.pdf. Accessed 05 November 2017.

  8. Hoffmann, C. E. F., Neves, L. A. S., Bastos, C. F., & Wallau, G. L. (2007). Atividade alelopática de Nerium oleander L. e Dieffenbachia picta schott em sementes de Lactuca Sativa L. e Bidens pilosa L. Revista de Ciências Agroveterinárias, 6(1), 11–21.

  9. Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research/Reviews in Mutation Research. https://doi.org/10.1016/j.mrrev.2009.06.002.

  10. Liang, Y., & Wong, M. H. (2003). Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong. Chemosphere. https://doi.org/10.1016/S0045-6535(03)00505-8.

  11. Lokhande, R. S., Pravin, U. S., & Deepali, S. P. (2011). Study on physico-chemical parameters of waste water effluents from Taloja industrial area of Mumbai, India. International Journal of Ecosystem. https://doi.org/10.5923/j.ije.20110101.01.

  12. Matsumoto, S. T., Mantovani, M. S., Malaguttii, M. I. A., Dias, A. D., Fonseca, I. C., & Marin-Morales, M. A. (2004). Mutagenic potential of the water of a river that receives tannery effluent using the Allium cepa test system. Cytologia. https://doi.org/10.1508/cytologia.69.399.

  13. Menezes, A. P. S., Silva, J., Roloff, J., Reyes, J. M., Debastiani, R., Dias, J. F., Rohr, P., & Ferraz, A. B. F. (2013). Baccharis trimera (Less.) DC as gentoxicity indicators of exposure to coal nad emissions from a thermal power plant. Archives of Environmental Contamination and Toxicology https://doi.org/10.1007/s00244-013-9918-0.

  14. Menezes, A. P. S., Silva, J., Rossato, R. R., Santos, M. S., Decker, N., Da Silva, F. R., Cruz, C., Dihl, R. R., Lehmann, M., & Ferraz, A. B. F. (2015). Genotoxic and biochemical changes in Baccharis trimera induced by coal contamination. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2015.01.001.

  15. Menezes, A. P. S., Silva, J., Fisher, C., Silva, F. R., Reyes, J. M., Picada, J. N., Ferraz, A. G., Correa, D. S., Premoli, S. M., Dias, J. F., Souza, C. T., & Ferraz, A. B. F. (2016). Chemical and toxicological effects of edicinal Baccharis trimera extract from coal burning area. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.12.028.

  16. Pawitan, J. A. (1995). The micronucleus test: a method used in mutagenicity testing. Medical Journal of Indonesia. https://doi.org/10.13181/mji.v4i2.893.

  17. RAS (2015). Regra para Análise de Sementes - rules for seed analysis. Ministry of Agriculture, Livestock and Supply. Secretariat of Agricultural Defense. http://www.agricultura.gov.br/assuntos/insumosagropecuarios/arquivospublicacoes-insumos/2946_regras_analise__sementes.pdf. Accessed 11 August 2016.

  18. Rohr, P., Da-Silva, J., Da-Silva, F. R., Sarmento, M., Porto, C., Debastiani, R., Dos Santos, C. E. I., Dias, J. F., & Kvitko, K. (2012). Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleus cytome assay. Environmental and Molecular Mutagenesis. https://doi.org/10.1002/em.21744.

  19. Sarma, H., Deka, S., Deka, H., & Saikia, R. R. (2011). Accumulation of heavy metals in selected medicinal plants. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/978-1-4614-0668-6_4.

  20. Zocche, d. S. P., Costa, S., & Zocche, J. J. (2007). Baccharis trimera Less. DC. as an indicator of area recovery of coal mining. Brazilian Journal of Biology, 5(1), 702–704.

Download references

Author information

Correspondence to Leonardo Luís Artico.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artico, L.L., Kömmling, G., Clarindo, W.R. et al. Cytotoxic, Genotoxic, Mutagenic, and Phytotoxic Effects of the Extracts from Eragrostis plana Nees, 1841 (Poaceae), Grown in a Coal-Contaminated Region. Water Air Soil Pollut 231, 81 (2020). https://doi.org/10.1007/s11270-020-4457-6

Download citation

Keywords

  • Allium cepa
  • Chromosomal alterations
  • Germination index
  • Biomonitoring
  • Pollution