Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparing Electrochemical and Fenton-Based Processes for Aquaculture Biocide Degradation

Abstract

In this work, malachite green was degraded using different advanced oxidation processes (Fenton, photo-Fenton, sono-Fenton and electrochemical process). Malachite green is used as biocide in aquaculture and is usually discarded with the effluents. On higher pollutant concentration, all the Fenton-based reactions achieved excellent absorbance reduction up to 10 min. Classic Fenton was faster after 10 min of reaction and photo-Fenton acting faster before this point. The photocatalytic effect was better on the oxygen demand reduction (COD) with 86.91% against 79.19% of sono-Fenton and 62.72% of Fenton. All four methodologies had excellent absorbance reduction following the order: photo-Fenton (100% up to 30 min) > electrochemical (99.27%) > Fenton (98.11%) > sono-Fenton (73.99%). Despites the slowly initial degradation obtained for electrochemical process, the reaction achieved high capacity after 60 min. Toxicity tests, using Lactuca sativa seeds, indicated a significant reduction in the effluent toxicity following this sequence: sono-Fenton > photo-Fenton > Fenton > electrochemical. The results showed that all processes studied provided high levels of malachite green removal; however, the adequate use of each technique should be conduct with an accurate evaluation of the needed treatment considering the particularity of each method. Such techniques were successfully applied before to remove dye basic blue 99 and the hormone 17-α-methyltestosterone and corroborated by Lactuca sativa toxicity assays.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adityosulindro, S., Barthe, L., González-Labrada, K., Jáuregui Haza, U. J., Delmas, H., & Julcour, C. (2017). Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water. Ultrasonics Sonochemistry. https://doi.org/10.1016/j.ultsonch.2017.06.008.

  2. Alderman, D. J. (1985). Malachite green: a review. Journal of Fish Diseases. https://doi.org/10.1111/j.1365-2761.1985.tb00945.x.

  3. Ansari, A., & Nematollahi, D. (2018). A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured Β-PbO2 electrodes. Water Research. https://doi.org/10.1016/j.watres.2018.07.056.

  4. APHA, AWWA, WEF. (2012). Standard methods for examination of water and wastewater. Washington: American Public Health Association.

  5. Bañuelos, J. A., García-Rodríguez, O., El-Ghenymy, A., Rodríguez-Valadez, F. J., Godínez, L. A., & Brillas, E. (2016). Advanced oxidation treatment of malachite green dye using a low-cost carbon-felt air-diffusion cathode. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2016.03.012.

  6. Bergwerff, A. A., & Scherpenisse, P. (2003). Determination of residues of malachite green in aquatic animals. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. https://doi.org/10.1016/S1570-0232(03)00042-4.

  7. Borba, F. H., Módenes, A. N., Espinoza-Quiñones, F. R., Manenti, D. R., Bergamasco, R., & Mora, N. D. (2013). Toxicity assessment of tannery effluent treated by an optimized photo-Fenton process. Environmental Technology (United Kingdom). https://doi.org/10.1080/09593330.2012.710407.

  8. Brillas, E. (2014). A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton. Journal of the Brazilian Chemical Society. https://doi.org/10.5935/0103-5053.20130257.

  9. Carneiro, P. C. F., Schorer, M., & Mikos, J. D. (2005). Conventional therapeutic treatments on the control of the parasite Ichthyophtirius multifiliis in Rhamdia quelen. Pesquisa Agropecuária Brasileira. https://doi.org/10.1590/S0100-204X2005000100015.

  10. Chaparro, T. R., & Pires, E. C. (2010). Toxicity evaluation as a tool to asses the performance of an anaerobic immobilized biomass reactor. DYNA (Colombia).

  11. Chen, F., He, J., Zhao, J., & Yu, J. C. (2002a). Photo-Fenton degradation of malachite green catalyzed by aromatic compounds under visible light irradiation. New Journal of Chemistry. https://doi.org/10.1039/b107404k.

  12. Chen, F., Ma, W., He, J., & Zhao, J. (2002b). Fenton degradation of malachite green catalyzed by aromatic additives. The Journal of Physical Chemistry. A. https://doi.org/10.1021/jp0144350.

  13. Comninellis, C., & Chen, G. (2010). Electrochemistry for the environment. Electrochemistry for the Environment. https://doi.org/10.1007/978-0-387-68318-8.

  14. Comninellis, C., & De Battisti, A. (1996). Electrocatalysis in anodic oxidation of organics with simultaneous oxygen evolution. Journal de Chimie Physique et de Physico-Chimie Biologique. https://doi.org/10.1051/jcp/1996930673.

  15. da Silva Duarte, J. L., Solano, A. M. S., Arguelho, M. L. P. M., Tonholo, J., Martínez-Huitle, C. A., & de P. e. S Zanta, C. L. (2018). Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2018.02.012.

  16. da Silva Duarte, J. L., Meili, L., de M Gomez, L., Soletti, J. I., & de P. e. S Zanta, C. L. (2019). Electrochemical process and Fenton reaction followed by lamellar settler to oil/surfactant effluent degradation. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2019.100841.

  17. de Luna, L. A. V., da Silva, T. H. G., Nogueira, R. F. P., Kummrow, F., & Umbuzeiro, G. A. (2014). Aquatic toxicity of dyes before and after photo-Fenton treatment. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2014.05.047.

  18. De Moura Gomes, L., Da Silva Duarte, J. L., Pereira, N. M., Martínez-Huitle, C. A., Tonholo, J., & De Zanta, C. L. P. E. S. (2014). Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction. Water Science and Technology. https://doi.org/10.2166/wst.2014.129.

  19. Duarte, J. L. S., Soares, W. M. G., Gomes, L. M., Tonholo, J., & Zanta, C. L. P. S. (2013). Electrochemical oxidation of Safrole using Ti/RuXTi(1 - X)O2 system: preparation, characterization, and role of electrode composition. Electrocatalysis. https://doi.org/10.1007/s12678-013-0153-2.

  20. Duarte, J. L. S., Meili, L., Gomes, L. M., Melo, J. M. O., Ferro, A. B., Tavares, M. G., et al. (2019). Electrochemical degradation of 17-α-Methyltestosterone over DSA® electrodes. Chemical Engineering and Processing Process Intensification, 107548. https://doi.org/10.1016/j.cep.2019.107548.

  21. Dutta, K., Bhattacharjee, S., Chaudhuri, B., & Mukhopadhyay, S. (2003). Oxidative degradation of malachite green by Fenton generated hydroxyl radicals in aqueous acidic media. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. https://doi.org/10.1081/ESE-120021128.

  22. Eler, M. N., & Millani, T. J. (2007). Métodos de estudos de sustentabilidade aplicados a aquicultura TT - Sustainable development in aquiculture: methodology and strategies. Revista Brasileira de Zootecnia. https://doi.org/10.1590/S1516-35982007001000004.

  23. El-Ghenymy, A., Oturan, N., Oturan, M. A., Garrido, J. A., Cabot, P. L., Centellas, F., et al. (2013). Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2013.08.080.

  24. EPA (1996). Ecological effects test guidelines OPPTS (850.4200): seed germination/root elongation toxicity test. United States Environmental Protection Agency. EPA 712-C-96-154.

  25. Fuentealba, D., Venegas, C., Morales, M., & Waissbluth, O. (2016). Comparing photo-fenton degradation of malachite green using FeII and FeIII salts under UVA light irradiation. Journal of the Brazilian Chemical Society. https://doi.org/10.5935/0103-5053.20150258.

  26. Ghime, D., Goru, P., Ojha, S., & Ghosh, P. (2019). Oxidative decolorization of a malachite green oxalate dye through the photochemical advanced oxidation processes. Global Nest Journal. https://doi.org/10.30955/gnj.003000.

  27. Giorgetti, L., Talouizte, H., Merzouki, M., Caltavuturo, L., Geri, C., & Frassinetti, S. (2011). Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: a case study. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2011.08.002.

  28. Gomes, L. M., Silva, J. M., Duarte, J. L. S., Tavares, M. G., Santos, E. L., Machado, S. S., et al. (2019). Ecotoxicological evaluation of a fish farming effluent treated by Fenton oxidation and coagulation process. Separation Science and Technology. https://doi.org/10.1080/01496395.2019.1662808.

  29. Guo, X. C., Cao, X., Wang, H. H., Yuan, M., Chen, X. J., Kang, W. Y., & Zhou, W. H. (2017). Graphene-gold nanoparticles nanohybrids for electrochemical detection of malachite green. International Journal of Electrochemical Science. https://doi.org/10.20964/2017.08.49.

  30. Hameed, B. H., & Lee, T. W. (2009). Degradation of malachite green in aqueous solution by Fenton process. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2008.08.018.

  31. He, H. Y., & Tian, C. Y. (2016). Rapid photo- and photo-Fenton-like catalytic removals of malachite green in aqueous solution on undoped and doped TiO2 nanotubes. Desalination and Water Treatment. https://doi.org/10.1080/19443994.2015.1064033.

  32. Jiang, D. B., Liu, X., Xu, X., & Zhang, Y. X. (2018). Double-shell Fe 2 O 3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye. Journal of Physics and Chemistry of Solids. https://doi.org/10.1016/j.jpcs.2017.09.033.

  33. Klein, S., Feiden, A., Boscolo, W. R., et al. (2004). Chemical products for Ichthyophthirius multifiliis, Fouquet (1876) controll in Surubim do Iguaçu Steindachneridion sp., Garavello (1991) fingerlings. Semin Ciências Agrárias, 25, 51–58.

  34. Liang, J., Komarov, S., Hayashi, N., & Kasai, E. (2007). Improvement in sonochemical degradation of 4-chlorophenol by combined use of Fenton-like reagents. Ultrasonics Sonochemistry. https://doi.org/10.1016/j.ultsonch.2006.05.002.

  35. Mandal, A., Ojha, K., De, A. K., & Bhattacharjee, S. (2004). Removal of catechol from aqueous solution by advanced photo-oxidation process. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2004.05.007.

  36. Moumeni, O., Hamdaoui, O., & Pétrier, C. (2012). Sonochemical degradation of malachite green in water. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2012.09.011.

  37. Oturan, M. A., Guivarch, E., Oturan, N., & Sirés, I. (2008). Oxidation pathways of malachite green by Fe3+−catalyzed electro-Fenton process. Applied Catalysis B: Environmental. https://doi.org/10.1016/j.apcatb.2008.01.016.

  38. Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643380500326564.

  39. Rocha, A., Ceccarelli, R. C. G., Neto, P. S. S., et al. (1994). Eficácia de diferentes produtos químicos no controle de Ichthyophthirius multifiliis Fouquet (1876), em alevinos de pacu Piaractus mesopotamicus Holmberg (1887). Bol técnico do CEPTA, 7, 2–5.

  40. Sasidharan Pillai, I. M., & Gupta, A. K. (2016). Electrochemical degradation of malachite green: multivariate optimization, pathway identification and toxicity analysis. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. https://doi.org/10.1080/10934529.2016.1199640.

  41. Silva, M. R. A., Trovó, A. G., & Nogueira, R. F. P. (2007). Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. Journal of Photochemistry and Photobiology, A: Chemistry. https://doi.org/10.1016/j.jphotochem.2007.04.022.

  42. Singh, P., Raizada, P., Kumari, S., Kumar, A., Pathania, D., & Thakur, P. (2014). Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite. Applied Catalysis A: General. https://doi.org/10.1016/j.apcata.2014.02.009.

  43. Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology. https://doi.org/10.1016/j.aquatox.2003.09.008.

  44. Sudova, E., Machova, J., Svobodova, Z., & Vesely, T. (2007). Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Veterinarni Medicina. https://doi.org/10.17221/2027-VETMED.

  45. Sun, J. H., Sun, S. P., Fan, M. H., Guo, H. Q., Qiao, L. P., & Sun, R. X. (2007). A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2007.02.022.

  46. Tavares, M. G., Da Silva Santos, D. H., Albuquerque Torres, S. J., Oliveira Pimentel, W. R., Tonholo, J., & De Paiva E Silva Zanta, C. L. (2016). Efficiency and toxicity: comparison between the Fenton and electrochemical processes. Water Science and Technology. https://doi.org/10.2166/wst.2016.278.

  47. Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2011.09.019.

  48. Zanta, C. L. P. S., Friedrich, L. C., Machulek, A., Higa, K. M., & Quina, F. H. (2010). Surfactant degradation by a catechol-driven Fenton reaction. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2010.01.071.

  49. Zhang, F., Feng, C., Li, W., & Cui, J. (2014). Indirect electrochemical oxidation of dye wastewater containing acid orange 7 using Ti/ruo2-Pt electrode. International Journal of Electrochemical Science.

Download references

Funding

Jéssica M. O. Melo and José L.S. Duarte gratefully acknowledge the CNPq fellowship PROJETO: 870220/2000-4 -Processo: 161798/2014-4. Carmem L.P.S. Zanta thanks the financial support provided by FAPEAL.

Author information

Correspondence to José L. S. Duarte.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melo, J.M.O., Duarte, J.L.S., Ferro, A.B. et al. Comparing Electrochemical and Fenton-Based Processes for Aquaculture Biocide Degradation. Water Air Soil Pollut 231, 79 (2020). https://doi.org/10.1007/s11270-020-4454-9

Download citation

Keywords

  • Malachite green
  • Aquaculture
  • Removal
  • Toxicity
  • Lactuca sativa