Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification of Anionic and Nonionic Surfactant and Recalcitrants Compounds in Commercial Laundry Wastewater by GC-MS Analysis After Anaerobic Fluidized Bed Reactor Treatment

  • 85 Accesses

Abstract

This study aimed to identify chemical compounds in raw commercial laundry wastewater and after biodegradation in an anaerobic fluidized bed reactor (FBR) on an increased scale. Solid-phase extraction (SPE) and solid-phase microextraction (SPME) techniques were used to concentrate and extract the compounds from the complex matrices that were identified in gas chromatography coupled to mass spectrometry. By using SPE, it was possible to identify the hydrophobic and hydrophilic compounds diversity in the commercial laundry wastewater, FBR influent and effluent, and to concentrate more quantity of analytes when compared with the SPME technique. The major compounds identified were oleamide, hexadecanol, dodecanol, nonadecanol, eicosanol, ethylene glycol monolauryl ester, chlorododecane, tridecanol, tert-octyl phenol, and nonylphenol. In the FBR effluent was observed a lower compound diversity, probably due to the degradation process and change in chemical structure of these compounds. The linear alkylbenzene sulfonate (LAS) concentration in commercial laundry wastewater ranged from 290.3 to 1.2 mg/L. By SPE technique was observed greater extraction of toxic and recalcitrant compounds from commercial laundry wastewater, FBR influent and efluente when compared with SPME. Even though the SPE technique is more expensive, this methodology is more interesting for the mapping of toxic compounds to a complex matrix.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abboud, M. M., Khleifat, K. M., Batarseh, M., Tarawneh, K. A., Al-Mustafa, A., & Al-Madadhah, M. (2007). Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme and Microbial Technology, 41(4), 432–439. https://doi.org/10.1016/j.enzmictec.2007.03.011.

  2. Ahmad, J., & EL-Dessouky, H. (2008). Design of a modified low cost treatment system for the recycling and reuse of laundry waste water. Resources, Conservation and Recycling, 52(7), 973–978. https://doi.org/10.1016/j.resconrec.2008.03.001.

  3. Almendariz, F. J., Meraz, M., Soberon, G., & Monroy, O. (2001). Degradation of linear alkylbenzene sulphonates (LAS) in an acidogenic reactor bioaugmented with a Pseudomonas aeruginosa (M113) strain. Water Science and Technology, 44, 183–188.

  4. APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater (2005), 20th Ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC.

  5. Arthur, C. L., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 62(19), 2145–2148. https://doi.org/10.1021/ac00218a019.

  6. Barros, A. R., Cavalcante de Amorim, E. L., Reis, C. M., Shida, G. M., & Silva, E. L. (2010). Biohydrogen production in anaerobic fluidized bed reactors: effect of support material and hydraulic retention time. International Journal of Hydrogen Energy, 35(8), 3379–3388. https://doi.org/10.1016/j.ijhydene.2010.01.108.

  7. Bingham, E., & Cohrssen, B. (2012). In E. Bingham, B. Cohrssen, & F. A. Patty (Eds.), Patty’s Toxicology, 6 Volume Set (6th ed.). Hoboken: John Wiley & Sons.

  8. Braga, J. K., & Varesche, M. B. A. (2014). Commercial laundry water characterisation. American Journal of Analytical Chemistry, 2014, 8–16. https://doi.org/10.4236/ajac.2014.51002.

  9. Braga, J. K., Motteran, F., Macedo, T. Z., Sakamoto, I. K., Delforno, T. P., Okada, D. Y., et al. (2015). Biodegradation of linear alkylbenzene sulfonate in commercial laundry wastewater by an anaerobic fluidized bed reactor. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(9), 946–957. https://doi.org/10.1080/10934529.2015.1030290.

  10. BRASIL (1986). CONAMA - Conselho Nacional do Meio Ambiente. Resolução nº 20 de 18 de junho de 1986. Estabelece a classificação das águas do Território Nacional e disciplina o enquadramento dos cursos de água nas classes. Brasília.

  11. Carosia, M. F., Okada, D. Y., Sakamoto, I. K., Silva, E. L., & Varesche, M. B. A. (2014). Microbial characterization and degradation of linear alkylbenzene sulfonate in an anaerobic reactor treating wastewater containing soap powder. Bioresource Technology, 167, 316–323. https://doi.org/10.1016/j.biortech.2014.06.002.

  12. International Association for Soaps, Detergents and Maintenance Products (AISE/CESIO)”, in: International Year Book and Statesmen's Who's Who, Edited by: Jennifer Dilworth, Megan Stuart-Jones. Consulted online on 07 may 2017. https://doi.org/10.1163/1570-6664_iyb_SIM_org_39190

  13. Cunico, L. P., Damaceno, D. S., Matricarde Falleiro, R. M., Sarup, B., Abildskov, J., Ceriani, R., & Gani, R. (2015). Vapour liquid equilibria of monocaprylin plus palmitic acid or methyl stearate at P = (1.20 and 2.50) kPa by using DSC technique. The Journal of Chemical Thermodynamics, 91, 108–115. https://doi.org/10.1016/j.jct.2015.07.033.

  14. Danielson, N. D., Gallagher, P. A, & Bao, J. J. (2006). Chemical reagents and derivatization procedures in drug analysis. Encyclopedia of Analytical Chemistry, 7042–7076. doi:https://doi.org/10.1002/9780470027318.a1905

  15. De Weert, J. P. A., Viñas, M., Grotenhuis, T., Rijnaarts, H. H. M., & Langenhoff, A. A. M. (2011). Degradation of 4-n-nonylphenol under nitrate reducing conditions. Biodegradation, 22(1), 175–187. https://doi.org/10.1007/s10532-010-9386-4.

  16. Delforno, T. P., Moura, A. G. L., Okada, D. Y., & Varesche, M. B. A. (2014). Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors. Bioresource Technology. https://doi.org/10.1016/j.biortech.2013.11.102.

  17. Diez Blanco, V., García Encina, P., & Fdz-Polanco, F. (1995). Effects of biofilm growth, gas and liquid velocities on the expansion of an anaerobic fluidized bed reactor (Afbr). Water Research, 29(7), 1649–1654.

  18. Dilallo, R., & Albertson, O. E. (1961). Volatile acids by direct titration. Journal Water Pollution Control Federation, 33(4), 356–365.

  19. Ekins, S. (2007). In S. Ekins (Ed.), Computational toxicology-risk assessment for pharmaceutical and environmental chemicals. Hobokey: John Wiley & Sons, Inc.

  20. Erythropel, H. C., Maric, M., Nicell, J. A., Leask, R. L., & Yargeau, V. (2014). Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Applied Microbiology and Biotechnology, 98(24), 9967–9981. https://doi.org/10.1007/s00253-014-6183-8.

  21. Gerardi, M. H. (2003). The microbiology of anaerobic digesters. Vasa. https://doi.org/10.1002/0471468967.

  22. Gravelle, A. J., Blach, C., Weiss, J., Barbut, S., & Marangoni, A. G. (2017). Structure and properties of an ethylcellulose and stearyl alcohol/stearic acid (EC/SO:SA) hybrid oleogelator system. European Journal of Lipid Science and Technology, 119(11), 1,700,069. https://doi.org/10.1002/ejlt.201700069.

  23. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.

  24. CRC handbook of chemistry and physics. 93rd ed., Haynes WM, editor. Boca Raton, FL: CRC Press; 2012, Section 4. p. 121–123. 

  25. Human and Environmental Risk Assessment on ingredients of household cleaning products (2009). HERA press, Guidance Document, June. Version 4.0. LAS-Linear Alkylbenzene Sulphonate. 1–81.

  26. Human & Environmental Risk Assessment on ingredients of European household cleaning products (2002). HERA press, Guidance Document Methodology, April. Alcohol Ethoxysulphates (AES) Environmental Risk Assessment. 1-36.

  27. Khleifat, K. M. (2006). Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme and Microbial Technology, 39(5), 1030–1035. https://doi.org/10.1016/j.enzmictec.2006.02.007.

  28. Koma, D., Hasumi, F., Yamamoto, E., Ohta, T., Chung, S.-Y., & Kubo, M. (2001). Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. Journal of Bioscience and Bioengineering, 91(1), 94–96.

  29. Koma, D., Sakashita, Y., Kubota, K., Fujii, Y., Hasumi, F., Chung, S.-Y., & Kubo, M. (2003). Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Bioscience, Biotechnology, and Biochemistry, 67(7), 1590–1593. https://doi.org/10.1271/bbb.67.1590.

  30. Kraig, B. (2012). The Oxford Encyclopedia of Food and Drink in America. (B. K. Andrew Smith, Ed.). Oxford University Press. doi:https://doi.org/10.1093/acref/9780199734962.001.0001.

  31. Kumar, A., & Kumar, P. (2008). Anionic surfactants in treated sewage and sludges: risk assessment to aquatic and terrestrial environments. Bioresource Technology, 99, 2919–2929. https://doi.org/10.1016/j.biortech.2007.06.025.

  32. Lalman, J. A., & Bagley, D. M. (2001). Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Research, 35(12), 2975–2983. https://doi.org/10.1016/S0043-1354(00)00593-5.

  33. Lara-Martín, P. A., Gómez-Parra, A., Sanz, J. L., & González-Mazo, E. (2010). Anaerobic degradation pathway of linear alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments. Environmental Science & Technology, 44(5), 1670–1676. https://doi.org/10.1021/es9032887.

  34. Lattuati, A., Metzger, P., Acquaviva, M., Bertrand, J.-C., & Largeau, C. (2002). n-Alkane degradation by Marinobacter hydrocarbonoclasticus strain SP 17: long chain b-hydroxy acids as indicators of bacterial activity. Organic Geochemistry, 33, 37–45.

  35. Lopezgalindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36(1–3), 51–63. https://doi.org/10.1016/j.clay.2006.06.016.

  36. Macedo, T. Z., Okada, D. Y., Delforno, T. P., Braga, J. K., Silva, E. L., & Varesche, M. B. A. (2015). The comparative advantages of ethanol and sucrose as co-substrates in the degradation of an anionic surfactant: microbial community selection. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-015-1424-5.

  37. Menezes, J. C. S. dos S. Tratamento e Reciclagem do Efluente de uma Lavanderia Industrial. 2005. Dissertação (Mestrado em Engenharia) - Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2005.

  38. Merrettig-bruns, U., & Jelen, E. (2009). Anaerobic biodegradation of detergent surfactants. Materials, 2(1), 181–206. https://doi.org/10.3390/ma2010181.

  39. Milman, B. L. (2011). Techniques and Methods of Identification. In Chemical Identification and its Quality Assurance (pp. 23–39). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:https://doi.org/10.1007/978-3-642-15,361-7_2.

  40. Motteran, F., Braga, J. K., Sakamoto, I. K., Silva, E. L., & Varesche, M. B. A. (2014a). Degradation of high concentrations of nonionic surfactant (linear alcohol ethoxylate) in an anaerobic fluidized bed reactor. Science of the Total Environment, 481(1), 121–128. https://doi.org/10.1016/j.scitotenv.2014.02.024.

  41. Motteran, F., Lima Gomes, P. C. F., Silva, E. L., & Varesche, M. B. A. (2017). Simultaneous determination of anionic and nonionic surfactants in commercial laundry wastewater and anaerobic fluidized bed reactor effluent by online column-switching liquid chromatography/tandem mass spectrometry. Science of the Total Environment, 580, 1120–1128. https://doi.org/10.1016/j.scitotenv.2016.12.068.

  42. Motteran, F., Nadai, B. M., Braga, J. K., Silva, E. L., & Varesche, M. B. A. (2018). Metabolic routes involved in the removal of linear alkylbenzene sulfonate (LAS) employing linear alcohol ethoxylated and ethanol as co-substrates in enlarged scale fluidized bed reactor. Science of the Total Environment, 640–641, 1411–1423. https://doi.org/10.1016/j.scitotenv.2018.05.375.

  43. Nabholz, J., Miller, P., & Zeeman, M. (1993). Environmental risk assessment of new chemicals under the toxic substances control Act TSCA section five. In Environmental Toxicology and Risk Assessment (pp. 40–40–16). 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959: ASTM International. doi:https://doi.org/10.1520/STP19232S.

  44. Okada, D. Y. (2012). Degradação de surfactante aniônico em reator UASB com água residuária de lavanderia. Doutorado: Escola de Engenharia de São Carlos.

  45. Okada, D. Y., Esteves, A. S., Delforno, T. P., Hirasawa, J. S., Duarte, I. C. S., & Varesche, M. B. A. (2013). Influence of co-substrates in the anaerobic degradation of an anionic surfactant. Brazilian Journal of Chemical Engineering, 30(3), 499–506. https://doi.org/10.1590/S0104-66322013000300008.

  46. Oliveira, L. L., Costa, R. B., Duarte, I. C. S., Silva, E. L., & Varesche, M. B. A. (2010). Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor. Brazilian Journal of Chemical Engineering, 27(04), 539–543.

  47. Olmos, L., Muñoz, M., Galleguillos, F., Remonsellez, F., & Serón, M. (2009). Normalization of quantitative real-time PCR data of identified genes from an industrial bioleaching operation. 73, 231–234. doi:https://doi.org/10.4028/www.scientific.net/AMR.71-73.231.

  48. Paris, F., Balaguer, P., Térouanne, B., Servant, N., Lacoste, C., Cravedi, J.-P., et al. (2002). Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit α and β estrogen activities and antiandrogen activity in reporter cell lines. Molecular and Cellular Endocrinology, 193(1–2), 43–49. https://doi.org/10.1016/S0303-7207(02)00094-1.

  49. Penfold, J., Staples, E., Thompson, L., Tucker, I., Hines, J., Thomas, R. K., et al. (1999). Structure and composition of mixed surfactant micelles of sodium dodecyl sulfate and hexaethylene glycol monododecyl ether and of hexadecyltrimethylammonium bromide and hexaethylene glycol monododecyl ether. The Journal of Physical Chemistry B, 103(25), 5204–5211. https://doi.org/10.1021/jp990582a.

  50. Pérez-Armendáriz, B., Moreno, Y. M., Monroy-Hermosillo, O., Guyot, J. P., & González, R. O. (2010). Anaerobic Biodegradability and inhibitory effects of some anionic and cationic surfactants. Bulletin of Environmental Contamination and Toxicology, 85(3), 269–273. https://doi.org/10.1007/s00128-010-0096-8.

  51. Renner, R. (1997). EUROPEAN bans on surfactant trigger transatlantic debate. Environmental Science & Technology, 31(7), 316A–320A. https://doi.org/10.1021/es972366q.

  52. Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Journal - Water Pollution Control Federation, 58, 406–411.

  53. Sanderson, H., van Compernolle, R., Dyer, S. D., Price, B. B., Nielsen, A. M., Selby, M., et al. (2013). Occurrence and risk screening of alcohol ethoxylate surfactants in three U.S. river sediments associated with wastewater treatment plants. Science of the Total Environment, 463–464, 600–610. https://doi.org/10.1016/j.scitotenv.2013.05.047.

  54. Sanz, J. L., Culubret, E., de Ferrer, J., Moreno, A., & Berna, J. L. (2003). Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors. Biodegradation, 14(1), 57–64.

  55. Sanz, J. L., Köchling, T., Sanz, L., & Ko, T. (2007). Molecular biology techniques used in wastewater treatment: an overview. Process Biochemistry, 42(2), 119–133. https://doi.org/10.1016/j.procbio.2006.10.003.

  56. Scott, M. J., & Jones, M. N. (2000). The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta - Biomembranes, 1508(1–2), 235–251. https://doi.org/10.1016/S0304-4157(00)00013-7.

  57. Sun, J., Zhang, Y., Pan, X., & Zhu, G. (2018). The effects of anionic and non-ionic surfactant on anaerobic co-digestion of sludge, food wastes and green wastes. Environmental Technology, 1–10. doi:https://doi.org/10.1080/09593330.2018.1446457.

  58. Thomas, O. R., & White, G. F. (1989). Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnology and Applied Biochemistry, 11(3), 318–327. https://doi.org/10.1111/j.1470-8744.1989.tb00064.x.

  59. Tsuda, T., Takino, A., Kojima, M., Harada, H., Muraki, K., & Tsuji, M. (2000). 4-Nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa. Chemosphere, 41(5), 757–762. https://doi.org/10.1016/S0045-6535(99)00465-8.

  60. Veiga, F., Rodrigues, J. L., Batista, B. L., & Oliveira, D. P. De. (2007). Alquilfenóis e alquilfenóis etoxilados: uma visão ambiental. Revista Brasileira de Toxicologia, 20 (12), 1-12. 

  61. Wang, Y., Zhang, Y., Li, X., Mingzhu, S., Zhuo, W., Wang, Y., et al. (2015). Exploring the effects of different types of surfactants on zebrafish embryos and larvae. Scientific Reports, 5(10107), 1–10. https://doi.org/10.1038/srep10107.

  62. Watanabe, K., Imai, S., & Mori, Y. H. (2005). Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using HFC-32 and sodium dodecyl sulfate. Chemical Engineering Science, 60(17), 4846–4857. https://doi.org/10.1016/j.ces.2005.03.043.

  63. Wilkes CE, Summers JW, Daniels CA, Berard MT. PVC handbook (2005). 1st ed. Germany: Hanser Verlag; p. 414–5.

  64. Xu, S., Zou, L., Ling, X., Wei, Y., & Zhang, S. (2014). Preparation and thermal reliability of methyl palmitate/methyl stearate mixture as a novel composite phase change material. Energy and Buildings, 68, 372–375. https://doi.org/10.1016/j.enbuild.2013.09.038.

  65. Yalkowsky, S. H. (2003). Handbook of aqueous solubility data. Journal of Medicinal Chemistry, CRC Press, Boca Raton, FL. 2003, 46(19) 4213 pp.

  66. Zedelius, J., Rabus, R., Grundmann, O., Werner, I., Brodkorb, D., Schreiber, F., et al. (2011). Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environmental Microbiology Reports, 3(1), 125–135. https://doi.org/10.1111/j.1758-2229.2010.00198.x.

  67. Zhang, Q.-H., Zhou, L.-D., Chen, H., Wang, C.-Z., Xia, Z.-N., & Yuan, C.-S. (2016). Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. TrAC Trends in Analytical Chemistry, 80, 57–65. https://doi.org/10.1016/j.trac.2016.02.017.

Download references

Funding

The authors gratefully acknowledge the Laboratório de Processos Biológicos—LPB/EESC/USP, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2013/19025-3 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support.

Author information

Correspondence to Fabricio Motteran or Maria Bernadete Amâncio Varesche.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Capsule: SPE technique is efficient for extraction of recalcitrant and toxic compounds in complex matrix an the utilization of co-substrate in the help the degradation of these compounds

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Motteran, F., Nascimento, R.F., Nadai, B.M. et al. Identification of Anionic and Nonionic Surfactant and Recalcitrants Compounds in Commercial Laundry Wastewater by GC-MS Analysis After Anaerobic Fluidized Bed Reactor Treatment. Water Air Soil Pollut 230, 301 (2019). https://doi.org/10.1007/s11270-019-4357-9

Download citation

Keywords

  • SPME
  • SPE
  • Fluidized bed anaerobic reactor
  • Toxic compounds identification
  • Wastewater treatment