Advertisement

Water, Air, & Soil Pollution

, 231:33 | Cite as

Response Surface Methodology Approach Applied to the Study of Arsenic (V) Migration by Facilitated Transport in Polymer Inclusion Membranes

  • Yahsé Rojas-ChallaEmail author
  • Eduardo Rodríguez de San Miguel
  • Josefina de Gyves
Article

Abstract

The present study provides an alternative view of the applications of response surface methodology (RSM) coupled to the Derringer’s desirability function (DF) to analyze and optimize system’s composition to target different environmental applications related to the transport of As (V) through polymer inclusion membranes (PIMs). In this case, membranes contained cellulose triacetate (CTA), as support, trioctylmethylammonium chloride (Aliquat 336 = A336), as carrier, and tris(2-ethylhexyl) phosphate (TEHP), as plasticizer. A four-factor Doehlert design (variables: CTA weight, A336 and TEHP content, and HCl concentration) was employed. Statistical data analyses showed that A336, TEHP, CTA, and different kinds of interactions among them determined As (V) migration, depending on the measured response (PFeed, PStripping, ΔpH, or PIM thickness). For instance, an efficient system able to maximize the permeabilities, without altering the pH of feed solution, is obtained using as composition 22% CTA, 48% A336, and 30% TEHP and 0.1 mol/L HCl solution in the strip phase. If the change of pH is not relevant, 40% CTA and 60% A336 lead to a higher transport when the strip solution conditions are maintained. Furthermore, the composition 46% CTA, 35% A336, and 20% TEHP is suggested for passive sampling devices with speciation capabilities.

Graphical abstract

.

Keywords

Arsenic Doehlert design Polymer inclusion membrane (PIM)  Response surface methodology (RSM) 

Notes

Acknowledgments

The authors also acknowledge Q. Nadia Marcela Munguía Acevedo and Q.F.B. María Guadalupe Espejel Maya for technical services.

Funding Information

Y. Rojas-Challa acknowledges DGAPA-UNAM for her postdoctoral grant. Financial support from DGAPA-UNAM (PAPIIT IN229219) is gratefully acknowledged.

References

  1. Alizadeh, T., Rashedi, M., Hanifehpour, Y., & Joo, S. W. (2015). Improvement of durability and analytical characteristics of arsenic-imprinted polymer-based PVC membrane electrode via surface modification of nano-sized imprinted polymer particles: part 2. Electrochimica Acta, 178, 877–885.  https://doi.org/10.1016/j.electacta.2015.08.045.CrossRefGoogle Scholar
  2. Almeida, M. I., Cattrall, R. W., & Kolev, S. D. (2012). Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). Journal of Membrane Science, 415-416, 9–23.  https://doi.org/10.1016/j.memsci.2012.06.006.CrossRefGoogle Scholar
  3. Ballinas, M. L., Rodríguez de San Miguel, E., Rodríguez, M. T. J., Silva, O., Muñoz, M., & De Gyves, J. (2004). Arsenic(V) removal with polymer inclusion membranes from sulfuric acid media using DBBP as carrier. Environmental Science & Technology, 38(3), 886–891.  https://doi.org/10.1021/es030422j.CrossRefGoogle Scholar
  4. Bey, S., Criscuoli, A., Figoli, A., Leopold, A., Simone, S., Benamor, M., et al. (2010). Removal of As(V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant. Desalination, 264(3), 193–200.  https://doi.org/10.1016/j.desal.2010.09.027.CrossRefGoogle Scholar
  5. Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379(2), 109–120.  https://doi.org/10.1016/j.scitotenv.2007.02.037.CrossRefGoogle Scholar
  6. Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.  https://doi.org/10.1080/00224065.1980.11980968.CrossRefGoogle Scholar
  7. Ferraz, H. C., Duarte, L. T., Di Luccio, M., Alves, T. L. M., Habert, A. C., & Borges, C. P. (2007). Recent achievements in facilitated transport membranes for separation processes. Brazilian Journal of Chemical Engineering, 24(1), 101–118.  https://doi.org/10.1590/S0104-66322007000100010.CrossRefGoogle Scholar
  8. Ferreira, S. L. C., dos Santos, W. N. L., Quintella, C. M., Neto, B. C. B., & Bosque-Sendra, J. M. (2004). Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta, 63(4), 1061–1067.  https://doi.org/10.1016/j.talanta.2004.01.015.CrossRefGoogle Scholar
  9. Fitrianto, A., & Midi, H. (2012). Multi-response optimization via desirability function for the Black Liquor DATA. Journal of Science and Technology, 4(1), 91–102.Google Scholar
  10. Fontàs, C., Tayeb, R., Dhahbi, M., Gaudichet, E., Thominette, F., Roy, P., et al. (2007). Polymer inclusion membranes: the concept of fixed sites membrane revised. Journal of Membrane Science, 290(1), 62–72.  https://doi.org/10.1016/j.memsci.2006.12.019.CrossRefGoogle Scholar
  11. Fontàs, C., Vera, R., Batalla, A., Kolev, S. D., & Anticó, E. (2014). A novel low-cost detection method for screening of arsenic in groundwater. Environmental Science and Pollution Research, 21(20), 11682–11688.  https://doi.org/10.1007/s11356-014-2917-5.CrossRefGoogle Scholar
  12. Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors - sensor principles and architectures. Sensors (Basel), 8(3), 1400–1458.  https://doi.org/10.3390/s80314000.CrossRefGoogle Scholar
  13. Güell, R., Fontàs, C., Salvadó, V., & Anticó, E. (2010). Modelling of liquid–liquid extraction and liquid membrane separation of arsenic species in environmental matrices. Separation and Purification Technology, 72(3), 319–325.  https://doi.org/10.1016/j.seppur.2010.02.023.CrossRefGoogle Scholar
  14. Güell, R., Anticó, E., Kolev, S. D., Benavente, J., Salvadó, V., & Fontàs, C. (2011a). Development and characterization of polymer inclusion membranes for the separation and speciation of inorganic As species. Journal of Membrane Science, 383(1), 88–95.  https://doi.org/10.1016/j.memsci.2011.08.037.CrossRefGoogle Scholar
  15. Güell, R., Fontàs, C., Anticó, E., Salvadó, V., Crespo, J. G., & Velizarov, S. (2011b). Transport and separation of arsenate and arsenite from aqueous media by supported liquid and anion-exchange membranes. Separation and Purification Technology, 80(3), 428–434.  https://doi.org/10.1016/j.seppur.2011.05.015.CrossRefGoogle Scholar
  16. Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133(1), 1–16.  https://doi.org/10.1016/S0378-4274(02)00084-X.CrossRefGoogle Scholar
  17. Karanam, S. K., & Medicherla, N. R. (2010). Application of Doehlert experimental design for the optimization of medium constituents for the production of L-asparaginase from Palm Kernal cake (Elaeis guineensis). Journal of Microbial & Biochemical Technology, 2(1), 007–012.  https://doi.org/10.4172/1948-5948.1000016.CrossRefGoogle Scholar
  18. Kislik, V. (2009). Liquid membranes: principles and applications in chemical separations and wastewater treatment (First ed.). Great Britain: Elsevier Science.Google Scholar
  19. Lewis, G. A., Mathieu, D., & Phan-Tan-Luu, R. (1998). Pharmaceutical experimental design (First ed.). New York: CRC press.CrossRefGoogle Scholar
  20. Mang, D. Y., Abdou, A. B., Njintang, N. Y., Djiogue, E. J. M., Loura, B. B., & Mbofung, M. C. (2015). Application of desirability-function and RSM to optimize antioxidant properties of mucuna milk. Journal of Food Measurement and Characterization, 9(4), 495–507.  https://doi.org/10.1007/s11694-015-9258-z.CrossRefGoogle Scholar
  21. Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142(1), 1–53.  https://doi.org/10.1016/j.jhazmat.2007.01.006.CrossRefGoogle Scholar
  22. Mohapatra, P. K., Pathak, P. N., Kelkar, A., & Manchanda, V. K. (2004). Novel polymer inclusion membrane containing a macrocyclic ionophore for selective removal of strontium from nuclear waste solution. New Journal of Chemistry, 28(8), 1004–1009.  https://doi.org/10.1039/B305853K.CrossRefGoogle Scholar
  23. Noble, R., Koval, C., & Pellegrino, J. (1989). Facilitated transport membrane systems. Chemical Engineering Progress, 85, 58–70.Google Scholar
  24. Ouejhani, A., Hellal, F., Dachraoui, M., Lallevé, G., & Fauvarque, J. F. (2008). Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths. Journal of Hazardous Materials, 157(2), 423–431.  https://doi.org/10.1016/j.jhazmat.2008.01.046.CrossRefGoogle Scholar
  25. Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, and Soil Pollution, 200(1), 59–77.  https://doi.org/10.1007/s11270-008-9893-7.CrossRefGoogle Scholar
  26. Pont, N., Salvadó, V., & Fontàs, C. (2008). Selective transport and removal of Cd from chloride solutions by polymer inclusion membranes. Journal of Membrane Science, 318(1), 340–345.  https://doi.org/10.1016/j.memsci.2008.02.057.CrossRefGoogle Scholar
  27. Rahman, N., & Nasir, M. (2018). Application of Box–Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies. Environmental Science and Pollution Research, 25(26), 26114–26134.  https://doi.org/10.1007/s11356-018-2566-1.CrossRefGoogle Scholar
  28. Rea, R., Angelis, M. G. D., & Baschetti, M. G. (2019). Models for facilitated transport membranes: a review. Membranes, 9(2), 1–55.  https://doi.org/10.3390/membranes9020026.CrossRefGoogle Scholar
  29. Rivas, B. L., Sánchez, J., & Palencia, M. (2016). Organic membranes and polymers for the removal of pollutants. In P. Visakh & O. Nazarenko (Eds.), Nanostructured polymer membranes (Vol. 1, pp. 203–236). Beverly: Scrivener Publishing.CrossRefGoogle Scholar
  30. Rodríguez de San Miguel, E., Garduño-García, A. V., Aguilar, J. C., & de Gyves, J. (2007). Gold(III) Transport through polymer inclusion membranes: efficiency factors and pertraction mechanism using Kelex 100 as carrier. Industrial & Engineering Chemistry Research, 46(9), 2861–2869.  https://doi.org/10.1021/ie061454t.CrossRefGoogle Scholar
  31. Rodríguez de San Miguel, E., Aguilar, J. C., & de Gyves, J. (2008). Structural effects on metal ion migration across polymer inclusion membranes: dependence of transport profiles on nature of active plasticizer. Journal of Membrane Science, 307(1), 105–116.  https://doi.org/10.1016/j.memsci.2007.09.012.CrossRefGoogle Scholar
  32. Singh, N., Kumar, D., & Sahu, A. (2007). Arsenic in the environment: effects on human health and possible prevention. Journal of Environmental Biology, 28(2), 359–365.Google Scholar
  33. Subba Rao, R. V., Sivakumar, P., Natarajan, R., & Vasudeva Rao, P. R. (2002). Effect of Aliquat 336 concentration on transportation of hydrochloric acid across supported liquid membrane. Journal of Radioanalytical and Nuclear Chemistry, 252(1), 95–98.  https://doi.org/10.1023/a:1015291822047.CrossRefGoogle Scholar
  34. Trabelsi, S., Oturan, N., Bellakhal, N., & Oturan, M. A. (2012). Application of Doehlert matrix to determine the optimal conditions for landfill leachate treatment by electro-Fenton process. Journal of Materials and Environmental Science, 3(3), 426–433.Google Scholar
  35. Vázquez, M. I., Romero, V., Fontàs, C., Anticó, E., & Benavente, J. (2014). Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. Journal of Membrane Science, 455, 312–319.  https://doi.org/10.1016/j.memsci.2013.12.072.CrossRefGoogle Scholar
  36. Vera, R., Fontas, C., & Antıco, E. (2017). Analytical method development for arsenic monitoring in natural waters based on a polymer inclusion membrane system. In 15th International Conference on Environmental Science and Technology Rhodes Island, Greece, 2017: 2017.Google Scholar
  37. Vera, R., Anticó, E., & Fontàs, C. (2018). The use of a polymer inclusion membrane for arsenate determination in groundwater. Water, 10(8), 1–10.  https://doi.org/10.3390/w10081093.CrossRefGoogle Scholar
  38. Vrana, B., Allan, I. J., Greenwood, R., Mills, G. A., Dominiak, E., Svensson, K., et al. (2005). Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry, 24(10), 845–868.  https://doi.org/10.1016/j.trac.2005.06.006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yahsé Rojas-Challa
    • 1
    Email author
  • Eduardo Rodríguez de San Miguel
    • 1
  • Josefina de Gyves
    • 1
  1. 1.Departamento de Química Analítica, Facultad de QuímicaUniversidad Nacional Autónoma de México (UNAM), Ciudad UniversitariaCiudad de MéxicoMéxico

Personalised recommendations