Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Activity of Phosphatases in Soil Contaminated with PAHs

  • 110 Accesses


Polycyclic aromatic hydrocarbons (PAHs) upset the basic biological parameters of the soil, such as enzymatic activity, which can be used to identify the direction and intensity of organic and mineral substance transformation in the soil environment. The aim of this study was to determine the impact of soil contamination with naphthalene, phenanthrene, anthracene and pyrene at rates of 0–4000 mg kg−1 DM (dry matter) of soil on the activity of acid phosphatase and alkaline phosphatase. An analysis was also conducted on how some organic substances, such as cellulose, sucrose and compost at rates of 0 and 9 g kg−1 DM alleviate the PAH impact on the enzymes under study. The experiment was carried out in a laboratory with loamy sand as the soil material. Phosphatase resistance (RS) and soil resilience (RL) were calculated. The enzyme activity was found to depend significantly on the PAH rate, time of PAH deposition in soil and the type of organic substance added to the soil. The activity of acid and alkaline phosphatase increased with the degree of soil contamination with PAHs. Naphthalene had the greatest stimulating effect on enzyme activity. Biostimulation of soil with cellulose, sucrose and compost had a positive effect on acid and alkaline phosphatase activity, with cellulose and compost being the most effective in boosting acid and alkaline phosphatase activity, respectively. Naphthalene had the greatest effect on acid and alkaline phosphatase resistance and pyrene had the least effect. Low RL indices indicate that the presence of PAHs permanently disturbed the activity of acid and alkaline phosphatase.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Abd-Elsalam, H. E., Hafez, E. E., Hussain, A. A., Ali, A. G., & El-Hanafy, A. A. (2009). Isolation and identification of three-rings polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria. American-Eurasian Journal of Agricultural and Environmental Sciences, 5(1), 31–38.

  2. Agarwal, T. (2009). Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2009.06.081.

  3. Ågren, G. I., Wetterstedt, J. Å. M., & Billberger, M. F. K. (2012). Nutrient limitation on terrestrial plant growth–modeling the interaction between nitrogen and phosphorus. New Phytologist. https://doi.org/10.1111/j.1469-8137.2012.04116.x.

  4. Albanese, S., Fontaine, B., Chen, W., Lima, A., Cannatelli, C., Piccolo, A., Qi, S., Wang, M., & De Vivo, B. (2015). Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: the Campania Plain (Southern Italy) case study. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-014-9626-3.

  5. Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell'Amico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere. https://doi.org/10.1016/j.chemosphere.2004.06.013.

  6. Bakhtiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H., Bi, X., & Rahim, M. C. A. (2009). Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2009.05.008.

  7. Balota, E. L., Kanashiro, M., Filho, A. C., Andrade, D. S., & Dick, R. P. (2004). Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Brazilian Journal of Microbiology. https://doi.org/10.1590/S1517-83822004000300006.

  8. Baran, S., Bielinska, J. E., & Oleszczuk, P. (2004). Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 118, 221–232.

  9. Borowik, A., Wyszkowska, J., & Oszust, K. (2017a). Functional diversity of fungal communities in soil contaminated with diesel oil. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.01862.

  10. Borowik, A., Wyszkowska, J., & Wyszkowski, M. (2017b). Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0076-1.

  11. Borowik, A., Wyszkowska, J., & Oszust, K. (2018). Changes in the functional diversity of bacterial communities in soil contaminated with diesel oil. Journal of Elementology. https://doi.org/10.5601/jelem.2018.23.1.1603.

  12. Bortey-Sam, N., Ikenaka, Y., Nakayama Shouta, M. M., Akoto, O., Yohannes, Y. B., Baidoo, E., Mizukawa, H., & Ishizuka, M. (2014). Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis Ghana. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2014.07.071.

  13. Cao, Y., Yang, B., Song, Z., Wang, H., He, F., & Han, X. (2016). Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2016.04.033.

  14. Ciarkowska, K., Gambus, F., Antonkiewicz, J., & Koliopoulos, T. (2019). Polycyclic aromatic hydrocarbon and heavy metal contents in the urban soils in southern Poland. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.04.209.

  15. Dell Inc. (2016) Dell Statistica (data analysis software system), version 13. software.dell.com

  16. Dindar, E. F., Topaç, O., Hüseyin, Ş., & Başkaya, H. S. (2015). Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. International Biodeterioration & Biodegradation. https://doi.org/10.1016/j.ibiod.2015.09.011.

  17. Dvořák, T., Száková, J., Vondráčková, S., Košnář, Z., Holečková, Z., Najmanová, J., et al. (2017). Content of inorganic and organic pollutants and their mobility in bottom sediment from the Orlík water reservoir (Vltava river, Czech Republic). Soil and Sediment Contamination. https://doi.org/10.1080/15320383.2017.1364222.

  18. Egner, H., Riehm, H., & Domingo, W. R. (1960). Untersuchun-gen über die chemische bodenanalyse als grundlage für die beurteilung des nährstoffzustandes der böden. II. Chemische extractionsmethoden zur phospor- und kaliumbestimmung. Ann Royal Agricult College Sweden, 26, 199–215.

  19. Futa, B., Bielińska, E. J., Ligęza, S., Chmielewski, S., Wesołowska, S., Patkowski, K., & Mocek-Płóciniak, A. (2017). Enzymatic activity and content of polycyclic aromatic hydrocarbons (PAHs) in soils under low-stack emission in Lublin. Polish Journal of Soil Science. https://doi.org/10.17951/pjss/2017.50.1.63.

  20. Gao, P., Xu, M., Liu, Y., DaSilva, E. B., Xiang, P., & Ma, L. Q. (2019). Emerging and legacy PAHs in urban soils of four small cities: concentrations, distribution, and sources. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.05.403.

  21. Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews. https://doi.org/10.1111/j.1574-6976.2012.00343.

  22. Han, Y., Nambi, I. M., & Clement, T. P. (2018). Environmental impacts of the Chennai oil spill accident—a case study. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.01.128.

  23. Hindersmann, B., & Achten, C. (2018). Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs BPCA and alkylated PAHs. Environmental Pollution. https://doi.org/10.1016/j.envpol.2018.08.014.

  24. Hussein, I. A., & Mona, S. M. M. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum. https://doi.org/10.1016/j.ejpe.2015.03.011.

  25. ISO 11261 (1995). Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; International Organization for Standardization: Geneva, Switzerland.

  26. Klimkowicz-Pawlas, A., Maliszewska-Kordybach, B., & Smreczak, B. (2019). Triad-based screening risk assessment of the agricultural area exposed to the long-term PAHs contamination. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0220-y.0123456789.

  27. Klute A (1996). Methods of soil analysis. Madison: American Society of Agronomy.  Monograph 9.

  28. Kong, L., Gao, Y., Zhou, Q., Zhao, X., & Sun, Z. (2017). Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2017.09.040.

  29. Košnář, Z., Wiesnerová, L., Částková, T., Kroulíková, S., Bouček, J., Mercl, F., & Tlustoš, P. (2019). Bioremediation of polycyclic aromatic hydrocarbons (PAHs) present in biomass fly ash by co-composting and co-vermicomposting. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2019.02.037.

  30. Labud, V., García, C., & Hernández, T. (2007). Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere. https://doi.org/10.1016/j.chemosphere.2006.08.021.

  31. Lipińska, A., Kucharski, J., & Wyszkowska, J. (2013). Urease activity in soil contaminated with polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 22(5), 1393–1400.

  32. Lipińska, A., Kucharski, J., & Wyszkowska, J. (2014a). The effect of polycyclic aromatic hydrocarbons on the structure of organotrophic bacteria and dehydrogenase activity in soil. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2013.844175.

  33. Lipińska, A., Kucharski, J., & Wyszkowska, J. (2014b). Activity of arylsulphatase in soil contaminated with polycyclic aromatic hydrocarbons. Water, Air & Soil Pollution. https://doi.org/10.1007/s11270-014-2097-4.

  34. Liu, Y., Gao, P., Su, J., da Silva, E. B., de Oliveira, L. M., Townsend, T., Xiang, P., & Ma, L. Q. (2018). PAHs in urban soils of two Florida cities: background concentrations, distribution, and sources. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.09.119.

  35. Lors, C., Damidot, D., Ponge, J. F., & Pèriè, F. (2012). Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution. https://doi.org/10.1016/j.envpol.2012.02.004.

  36. Lu, J., Guo, C., Zhang, M., Lu, G., & Dang, Z. (2014). Biodegradation of single pyrene and mixtures of pyrene by a fusant bacterial strain F14. International Biodegradation & Biodeterioration. https://doi.org/10.1016/j.ibiod.2013.11.004.

  37. Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I. A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., & Peñuelas, J. (2017). Global patterns of phosphatase activity in natural soils. Scientific Reports. https://doi.org/10.1038/s41598-017-01418-8.

  38. Margesin, R., Zimmerbauer, A., & Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere. https://doi.org/10.1016/S0045-6535(99)00218-0.

  39. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organicmatter. In D. L. Sparks (Ed.), Method of soil analysis: chemical methods (pp. 1201–1229). Madison, WI: American Society of Agronomy.

  40. Obini, U., Okafor, C. O., & Afiukwa, J. N. (2013). Determination of levels of polycyclic aromatic hydrocarbons in soil contaminated with spent motor engine oil in Abakaliki auto-mechanic village. Journal of Applied Sciences and Environmental Management. https://doi.org/10.4314/jasem.v17i2.1.

  41. Orwin, K. H., & Wardle, D. A. (2004). New indices for quantifying the resistance and resilience of soil biota to exogenus disturbances. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2004.04.036.

  42. Park, I. S., & Park, J. W. (2011). Determination of a risk management primer at petroleum-contaminant sites: developing new human health risk assessment strategy. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2010.10.058.

  43. Piotrowska-Długosz, A., & Wilczewski, E. (2014). Soil phosphatase activity and phosphorus content as influenced by catch crops cultivated as green manure. Polish Journal of Environmental Studies, 23(1), 157–165.

  44. Rajput, P., Sarin, M. M., Rengarajan, R., & Singh, D. (2011). Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2011.08.018.

  45. Regulation of the Minister of Environment of 1 September 2016 on the method of conducting the assessment of land surface contamination (Journal of Laws of 2016, item 1395).

  46. Sądej, W., & Namiotko, A. (2010). Content of polycyclic aromatic hydrocarbons in soil fertilized with composted municipal waste. Polish Journal of Environmental Studies, 5(19), 999–1005.

  47. Sayara, T., Sarra, M., & Sanchez, A. (2010). Effects of compost stability and contaminant concentration on the bioremediation of PAHs contaminated soil through composting. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2010.03.104.

  48. Sayara, T., Borràs, E., Caminal, G., Sarrà, M., & Sánchez, A. (2011). Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2011.05.006.

  49. Schlichting, E., Blume, H. P., & Stahr, K. (1995). Bodenkundliches praktikum. Pareys studientexte 81. Berlin: Blackwell Wissenschafts-Verlag.

  50. Shrestha, R. A., Pham, T. D., & Sillanpää, M. (2010). Electro ultrasonic remediation of polycyclic aromatic hydrocarbons from contaminated soil. Journal of Applied Electrochemistry. https://doi.org/10.1007//s10800-010-0117-7.

  51. Sigmund, G., Poyntner, C., Piñar, G., Kah, M., & Hofmann, T. (2017). Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2017.11.010.

  52. Slezakova, K., Castro, D., Delerue-Matos, C., Alvim-Ferraz, C. M., Morais, S., & Pereira, C. M. (2012). Impact of vehicular traffic emissions on particulate-bound PAHs: levels and associated health risks. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2012.06.009.

  53. Smreczak, B. (2018). Bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soils. Poland: Institute of Soil Science and Plant Cultivation State Research Institute Puławy.

  54. Stefaniuk, M., Tsang, D. C. W., Yong, S. O., & Oleszczuk, P. (2018). A field study of bioavailable polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and biochar amended soils. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2018.01.045.

  55. Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular índices: an overview of possibilities. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology, volume 234 (pp. 49–133). Switzerland: Springer.

  56. Tejada, M., Gonzalez, J. L., Hernandez, M. T., & Garcia, C. (2008). Application of different organic amendments in a gasoline contaminated soil: effect on soil microbial properties. Bioresource Technology. https://doi.org/10.1016/j.biortech.2007.06.002.

  57. Telesiński, A., Krzyśko-Łupicka, T., Cybulska, K., & Wróbel, J. (2018). Response of soil phosphatase activities to contamination with two types of tar oil. Environmental Science & Pollution Research. https://doi.org/10.1007/s11356-018-2912-3.

  58. Ukalska-Jaruga, A., Smreczak, B., & Klimkowicz-Pawlas, A. (2019). Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. Journal of Soil and Sediments. https://doi.org/10.1007/s11368-018-2214-x.

  59. Vane, H. C., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., Moss-Hyes, V., & Nathanail, P. C. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2014.09.013.

  60. Wang, X., Yang, K., Tao, S., & Xing, B. (2007). Sorption of aromatic organic contaminants by biopolymers: effects of pH, copper (II) complexation and cellulose coating. Environmental Science & Technology. https://doi.org/10.1021/es061389e.

  61. Wang, Y., Tian, Z., Zhu, H., Cheng, Z., Kang, M., Luo, C., Li, J., & Zhang, G. (2012). Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: concentration, distribution, source, and risk assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2012.08.018.

  62. Wu, G., Li, X., Kechavarzi, C., Sakrabani, R., Sui, H., & Coulon, F. (2014). Influence and interactions of multi-factors on the bioavailability of PAHs in compost amended contaminated soils. Chemosphere. https://doi.org/10.1016/j.chemosphere.2014.03.035.

  63. Wyszkowska, J., & Wyszkowski, M. (2010). Activity of soil dehydrogenases, urease and acid and alkaline phosphatases in soil polluted with petroleum. Journal of Toxicology and Environmenatal Health. https://doi.org/10.1080/15287394.2010.492004.

  64. Wyszkowska, J., Kucharsk, I. M., & Kucharski, J. (2006). Application of the activity of soil enzymes in the evaluation of soil contamination by diesel oil. Polish Journal of Environmental Studies, 3(15), 501–506.

  65. Wyszkowska, J., Kucharski, M., & Kucharski, J. (2010). Activity of β-glucosidase, arylsulfatase and phosphatases in soil contaminated with copper. Journal of Elementology. https://doi.org/10.5601/jelem.2010.15.1.213-226.

  66. Wyszkowska, J., Borowik, A., & Kucharski, J. (2015). Response of Avena sativa, microorganisms and enzymes to contamination of soil with diesel oil. Plant Soil and Environment. https://doi.org/10.7221/463/2015-PSE.

  67. Yang, Y., Woodward, L. A., Li, Q. X., & Wang, J. (2014). Concentrations, source and risk assessment of polycyclic aromatic hydrocarbons in soils from midway atoll, North Pacifik Ocean. Plos One. https://doi.org/10.1371/journal.pone.0086441.

  68. Yurdakul, S., Çelik, I., Çelen, M., Öztürk, F., & Cetin, B. (2019). Levels, temporal/spatial variations and sources of PAHs and PCBs in soil of a highly industrialized area. Atmospheric Pollution Research. https://doi.org/10.1016/j.apr.2019.02.006.

  69. Zafra, G., Absalón, Á. E., Del Carmen Cuevas, M., & Cortés-Espinosa, D. V. (2014). Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water, Air and Soil Pollution. https://doi.org/10.1007/s11270-013-1826-4.

Download references


This study was supported by the Ministry of Science and Higher Education funds for statutory activity. The project was financially supported by the Minister of Science and Higher Education in the range of the program entitled “Regional Initiative of Excellence” for the years 2019–2022, Project No. 010/RID/2018/19, amount of funding 12.000.000 PLN.

Author information

Correspondence to Jadwiga Wyszkowska.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lipińska, A., Kucharski, J. & Wyszkowska, J. Activity of Phosphatases in Soil Contaminated with PAHs. Water Air Soil Pollut 230, 298 (2019). https://doi.org/10.1007/s11270-019-4344-1

Download citation


  • PAHs
  • Biostimulation
  • Organic substances
  • Soil enzymes
  • Resistance
  • Resilience