Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigating the Effect of Medicago sativa L. and Trifolium pratense L. Root Exudates on PAHs Bioremediation in an Aged-Contaminated Soil

Abstract

Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that accumulate in the environment, especially soils, and require remediation. Researches to develop bioremediation and phytoremediation (alternative eco-friendly technologies) are being conducted. First, a bioaccessibility measurement protocol was adapted to a brownfield soil using Tenax® beads in order to compare PAHs bioaccessibility in soil samples. PAHs desorption kinetics were established, described by a site distribution model, and a common extraction time was calculated (48 h). Second, the role of two Fabaceae (Medicago sativa L. or Trifolium pratense L.) root exudates in enhancing PAHs bioaccessibility and biodegradation in the studied soil was evaluated during microcosms experiments (28 °C). The CO2 emissions were significantly higher in presence of T. pratense exudates; the dehydrogenase activities showed improvements of the soil microbial activity in presence of two types of root exudates compared to untreated soil samples; the PAHs residual contents decreased more in untreated samples than in the presence of T. pratense exudates; and M. sativa exudates lowered PAHs bioaccessibility but not residual contents.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. AFNOR XP U44-163 (n.d.) Amendements organiques et supports de culture - Caractérisation de la matière organique par la minéralisation potentielle du carbone et de l’azote.

  2. Alagić, S., Maluckov, B. S., & Radojičić, V. B. (2015). How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Technologies and Environmental Policy, 17(3), 597–614.

  3. Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental Management, 60(4), 758–783.

  4. Alves, W. S., Manoel, E. A., Santos, N. S., Nunes, R. O., Domiciano, G. S., & Soares, M. R. (2018). Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar. International Journal of Phytoremediation, 20(8), 747–755.

  5. Barnier, C., Ouvrard, S., Robin, C., & Morel, J. L. (2014). Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci Total Environ., 470–471, 639–645.

  6. Cébron, A., Louvel, B., Faure, P., France-lanord, C., Chen, Y., Murrell, J. C., & Leyval, C. (2011). Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 13(3), 722–736.

  7. Connaughton, D. F., Stedinger, J. R., Lion, L. W., & Shuler, M. L. (1993). Description of time-varying desorption kinetics: release of naphthalene from contaminated soils. Environmental Science & Technology, 27(12), 2397–2403.

  8. Cornelissen, G., Van Noort, P. C. M., & Govers, H. A. J. (1997). Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: Sediment extraction with Tenax® and effects of contact time and solute hydrophobicity. Environmental Toxicology and Chemistry, 16(7), 1351–1357.

  9. Das, S., & Varma, A. (2011). Roles of enzymes in maintaining soil health. In G. Shukla & A. Varma (Eds.), Soil Enzymology (Vol. 22 – Soil Biology, 1st ed., pp. 25–42). Berlin: Springer-Verlag.

  10. Davin, M., Starren, A., Deleu, M., Lognay, G., Colinet, G., & Fauconnier, M.-L. (2018). Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils? Chemosphere., 194, 414–421.

  11. Ehlers, L. J., & Luthy, R. G. (2003). Contaminant bioavailability in improving risk assessment and remediation rests on better understanding bioavailability. Environmental Science & Technology, 37, 295–302.

  12. Hall, J., Soole, K., & Bentham, R. (2011). Hydrocarbon phytoremediation in the family Fabaceae-a review. International Journal of Phytoremediation, 13(4), 317–332.

  13. Hamdi, H., Benzarti, S., Aoyama, I., & Jedidi, N. (2012). Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). International Biodeterioration and Biodegradation, 67, 40–47.

  14. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1–3), 1–15.

  15. Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular-347.

  16. Institut National de l’Environnement Industriel et des Risques (INERIS). (2005). Hydrocarbures Aromatiques Polycyliques - Guide méthodologique - Acquisition des données d’entrée des modèles analytiques ou numériques de transferts dans les sols et les eaux souterraines. 53(9):1689–1699. doi:https://doi.org/10.1017/CBO9781107415324.004.

  17. ISO 11465:1993 cor 1994. (n.d.). Soil quality - Determination of dry matter and water content on a mass basis - Gravimetric method.

  18. ISO 13877:1998. (n.d.). Soil quality - determination of polynuclear aromatic hydrocarbons - Method using high -performance liquid chromatography.

  19. Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133, 71–84.

  20. Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773–795.

  21. Kobayashi, T., Kaminaga, H., Navarro, R. R., & Iimura, Y. (2012). Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. Journal of Environmental Science and Health. Part A Toxic/Hazardous Substances and Environmental Engineering, 47, 1138–1145.

  22. Kregiel, D., Berlowska, J., Witonska, I., Antolak, H., Proestos, C., Babic, M., Babic, L., & Zhang, B. (2017). Saponin-based, biological-active surfactants from plants. In R. Najjar (Ed.), Application and Characterization of Surfactants. IntechOpen. https://doi.org/10.5772/65591.

  23. Laha, S., Tansel, B., & Ussawarujikulchai, A. (2009). Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: A review. Journal of Environmental Management, 90, 95–100.

  24. Louvel, B. (2010). Etude en microcosmes de l’effet du ray-gras et de ses exsudats racinaire sur la dissipation des HAP et les communautés bactériennes dégradantes. Cours Léopold, Nancy, France: Université de Lorraine.

  25. Martin, B. C., George, S. J., Price, C. A., Ryan, M. H., & Tibbett, M. (2014). The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. The Science of the Total Environment, 472, 642–653.

  26. Oleszek, W., & Bialy, Z. (2006). Chromatographic determination of plant saponins-An update (2002-2005). Journal of Chromatography. A, 1112, 78–91.

  27. Ouvrard, S., Chenot, E. D., Masfaraud, J. F., & Schwartz, C. (2013). Long-term assessment of natural attenuation: Statistical approach on soils with aged PAH contamination. Biodegradation., 24(4), 539–548.

  28. Ouvrard, S., Leglize, P., & Morel, J. L. (2014). PAH Phytoremediation: rhizodegradation or rhizoattenuation? International Journal of Phytoremediation, 16(1), 46–61.

  29. Prague, M., Diakite, A., Commenges, D. (2012). Package ’marqLevAlg’ - Algorithme de Levenberg-Marquardt en R : Une alternative à ’optimx’ pour des problèmes de minimisation. 1ères Rencontres R, Bordeaux, France. <hal-00717566>

  30. Richardson, S. D., & Aitken, M. D. (2011). Desorption and bioavailability of polycyclic aromatic hydrocarbons in contaminated soil subjected to long-term in situ biostimulation. Environ Toxicol. Chem., 30(12), 2674–2681.

  31. Semple, K. T., Morriss, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science, 54, 809–818.

  32. Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science & Technology, 38(12), 228A–231A.

  33. Shaw, L., & Burns, R. (2005). Soil microbial activity. In J. Bloem, D. W. Hopkins, & A. Benedetti (Eds.), Microbiological methods for assessing soil quality. Cambridge: CABI Publishing.

  34. Uroz, S., Courty, P. E., & Oger, P. (2019). Plant symbionts are engineers of the plant-associates microbiome. Trends in Plant Science, 24(10), 905–916.

  35. Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry., 68, 275–297.

  36. Von Lau, E., Gan, S., Ng, H. K., & Poh, P. E. (2014). Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environmental Pollution, 184, 640–649.

  37. Wei, S., & Pan, S. (2010). Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species. J. Journal of Soils and Sediments, 10, 886–894.

  38. Yu, L., Duan, L., Naidu, R., & Semple, K. T. (2018). Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: putting together a bigger picture. Science of the Total Environment, 613–614, 1140–1153.

Download references

Author information

Correspondence to Marie Davin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb).

ESM 2

(DOCX 15 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davin, M., Starren, A., Marit, E. et al. Investigating the Effect of Medicago sativa L. and Trifolium pratense L. Root Exudates on PAHs Bioremediation in an Aged-Contaminated Soil. Water Air Soil Pollut 230, 296 (2019). https://doi.org/10.1007/s11270-019-4341-4

Download citation

Keywords

  • PAH
  • Tenax® extraction
  • Bioaccessibility
  • Bioremediation
  • Brownfield soil
  • Plant root exudates