Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Plant Species-Specific Litter Decomposition Rates Are Directly Affected by Tropospheric Ozone: Analysis of Trends and Modelling

  • 83 Accesses

Abstract

Litter decay is an important component of nutrient cycling processes in forest ecosystems, and its decomposition rates reflect functional adaptations among species. In this framework, tropospheric ozone (O3), which is recognised as a significant phytotoxic air pollutant, is one of the most important factors affecting forest health, and its effects on vegetation are species-specific. We used an O3-free air controlled exposure facility (O3-FACE) to quantify the effect of O3 fumigation (ambient air vs 1.4 × ambient air) on litter decay rates of leaves from three Quercus species: Q. ilex L., Q. pubescens Wild. and Q. robur L. Results demonstrate different trends over time and decomposition rates of residual dry mass, lignin, cellulose and acid-detergent fibre variables between control and treated litters. Analysis of decay rate k(t) trends showed species-specific differences, even within the same O3 treatment. Single exponential Olson’s model demonstrated to be useful to correctly predict mass loss over time M(t) in Q. ilex litter (\( \frac{M{(t)}_{mod}}{M{(t)}_{meas}}=0.967,{R}^2=0.935 \)) of independently collected data from a field study when a function k(t) over time (\( k(t)=\frac{1}{\left(a+b\times {t}^c\right)} \) ) was included. These results suggest that species-specific decomposability may be correlated with ecological growth strategy (deciduous vs evergreen) and structural characteristics of leaves. The species-specific effect of ozone on the decomposition rates could have remarkable effects on the carbon cycle within forest ecosystems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aber, J. D., Melillo, J. M., & McClaugherty, C. A. (1990). Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68(10), 2201–2208.

  2. Agathokleous, E., Saitanis, C. J., & Koike, T. (2015). Tropospheric O3, the nightmare of wild plants: a review study. Journal of Agricultural Meteorology, 71(2), 142–152.

  3. Ainsworth, E. A. (2016). Understanding and improving global crop response to ozone pollution. The Plant Journal, 90, 886–897.

  4. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661.

  5. Andersen, C. P. (2003). Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 157(2), 213–228.

  6. Anglada, J. M., Martins-Costa, M., Francisco, J. S., & Ruiz-López, M. F. (2015). Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Accounts of chemical research, 48(3), 575–583.

  7. Austin, A. T., Vivanco, L., Gonzálec-Arcac, A., & Pérez, L. I. (2014). There’s no place like Home? An exploration of the mechanism behind plant-litter decomposer affinity in terrestrial ecosystems. New Phytologist, 20, 307–314.

  8. Baldantoni, D., Fagnano, M., & Alfani, A. (2011). Tropospheric ozone effects on chemical composition and decomposition rate of Quercus ilex L. leaves. Science of the Total Environment, 409(5), 979–984.

  9. Baldantoni, D., Bellino, A., Manes, F., & Alfani, A. (2013). Ozone fumigation of Quercus ilex L. slows down leaf litter decomposition with no detectable change in leaf composition. Annals of forest science, 70(6), 571–578.

  10. Bao, X., Yu, J., Liang, W., Lu, C., Zhu, J., & Li, Q. (2015). The interactive effects of elevated ozone and wheat cultivars on soil microbial community composition and metabolic diversity. Applied Soil Ecology, 87, 11–18.

  11. Bender, J., Bergmann, E., Dohrmann, A., Tebbe, C. C., & Weigel, H. J. (2002). Impact of ozone on plant competition and structural diversity of rhizosphere microbial communities in grassland mesocosms. Phyton-Horn, 42(3), 7–12.

  12. Berg, B., & McClaugherty, C. (2003). Plant litter: decomposition, humus formation, carbon sequestration (p. 286). Berlin: Springer.

  13. Berg, B., Hannus, K., Popoff, T., & Theander, O. (1982). Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest, I. Canadian Journal of Botany, 60, 1310–1319.

  14. Bohlen, P. J., Parmalee, R. W., McCartney, D. A., & Edwards, C. A. (1997). Earthworm effects on carbon and nitrogen dynamics of surface litter in corn agroecosystems. Ecological Applications, 7(4), 1341–1349.

  15. Bonan, G. B., Hartman, M. D., Parton, W. J., & Wieder, W. R. (2013). Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the community land model version 4 (CLM4). Global Change Biology, 19, 957–974.

  16. Booker, F. L., Prior, S. A., Torbert, H. A., Fiscus, E. L., Pursley, W. A., & Hu, S. (2005). Decomposition of soybean grown under elevated concentrations of CO2 and O3. Global Change Biology, 11(4), 685–698.

  17. Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R., & Wood, S. A. (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229–238.

  18. Büker, P., Feng, Z., Uddling, J., Briolat, A., Alonso, R., et al. (2015). New flux-based dose-response relationships for ozone for European forest tree species. Environmental Pollution, 206, 163–174.

  19. Calvete-Sogo, H., Elvira, S., Sanz, J., González-Fernández, I., García-Gómez, H., Sánchez-Martín, L., Alonso, R., & Bermejo-Bermejo, V. (2014). Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response. Atmospheric Environment, 95, 197–206.

  20. Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Victoria Vaieretti, M., & Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecological Letters, 11(10), 1065–1071.

  21. Coûteaux, M. M., McTiernan, K. B., Berg, B., Szuberla, D., Dardenne, P., & Bottner, P. (1998). Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biology and Biochemistry, 30(5), 583–595.

  22. Couture, J. J., Holeski, L. M., & Lindroth, R. L. (2014). Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages. Plant, Cell and Environment, 37, 758–765.

  23. Dechaine, J., Ruan, H., Sanchez De Leon, Y., & Zou, X. (2005). Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico. Pedobiologia, 49(6), 601–607.

  24. Diaz-de-Quijano, M., Kefauver, S., Ogaya, R., Vollenweider, P., Ribas, À., & Peñuelas, J. (2016). Visible ozone-like injury, defoliation, and mortality in two Pinus uncinata stands in the Catalan Pyrenees (NE Spain). European journal of forest research, 135(4), 687–696.

  25. Esperschütz, J., Pritsch, K., Gattinger, A., Welzl, G., Haesler, F., Buegger, F., Winkler, J., Munch, J., & Schloter, M. (2009). Influence of chronic ozone stress on carbon translocation pattern into rhizosphere microbial communities of beech trees (Fagus sylvatica L.) during a growing season. Plant and Soil, 323(1-2), 85–95.

  26. Fagnano, M., & Maggio, A. (2008). Ozone damages to Italian crops: environmental constraints. Italian Journal of Agronomy, 1, 7–12.

  27. Fagnano, M., Maggio, A., & Fumagalli, I. (2009). Crops’ responses to ozone in Mediterranean environments. Environmental Pollution, 157(5), 1438–1444.

  28. Fares, S., Conte, A., & Chabbi, A. (2018). Ozone flux in plant ecosystems: new opportunities for long-term monitoring networks to deliver ozone-risk assessments. Environmental Science and Pollution Research, 25(9), 8240–8248.

  29. Fiore, A. M., Jacob, D. J., Field, B. D., Streets, D. G., Fernandes, S. D., & Jang, C. (2002). Linking ozone pollution and climate change: the case for controlling methane. Geophysical Research Letters, 29(19), 25–21.

  30. Fioretto, A., Di Nardo, C., Papa, S., & Fuggi, A. (2005). Lignin and cellulose degradation and nitrogen dynamics during decomposition of three-leaf litter species in a Mediterranean ecosystem. Soil Biology and Biochemistry, 37, 1083–1091.

  31. Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E., & Parton, W. J. (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6(7), 751–765.

  32. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. NY, USA: Wiley.

  33. Gimeno, B. S., Velissariou, D., Schenone, G., & Guardans, R. (1994). Ozone effects on the Mediterranean region: an overview. In J. Fuhrer & B. Achermann (Eds.), Critical Levels for Ozone. A UN–ECE workshop report (pp. 122–136). FAC Liebefeld.

  34. Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: an alternative scenario. Proceedings of the National Academy of Sciences of the United States, 97, 9875–9880.

  35. Hayes, F., Mills, G., Jones, L., & Ashmore, M. (2007). Meta-analysis of the relative sensitivity of seminatural vegetation species to ozone. Environmental Pollution, 146, 754–762.

  36. Hoshika, Y., Katata, G., Deushi, M., Watanabe, M., Koike, T., & Paoletti, E. (2015). Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Scientific Reports, 5, 9871.

  37. Hoshika, Y., Moura, B., & Paoletti, E. (2018). Ozone risk assessment in three oak species as affected by soil water availability. Environmental Science and Pollution Research, 25(9), 8125–8136.

  38. Hu, E., Yuan, Z., Zhang, H., Zhang, W., Wang, X., Jones, S. B., & Wang, N. (2018). Impact of elevated tropospheric ozone on soil C, N and microbial dynamics of winter wheat. Agriculture, Ecosystems & Environment, 253, 166–176.

  39. IPCC - Intergovernmental Panel on Climate Change. (2007). Climate change 2007: impacts, adaptation and vulnerability. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  40. IPCC - Intergovernmental Panel on Climate Change. (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.

  41. Jenny, H., Gessel, S. P., & Bingham, F. T. (1949). Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Science, 68(6), 419–432.

  42. Karberg, N. J., Scott, N. A., & Giardina, C. P. (2008). Methods for estimating litter decomposition. In C. M. Hoover (Ed.), Field Measurements for Forest Carbon Monitoring (pp. 103–111). Dordrecht: Springer.

  43. Karnosky, D. F., Zak, D. R., Pregitzer, K. S., Awmack, C. S., Bockheim, J. G., Dickson, R. E., Hendrey, G. R., Host, G. E., et al. (2003). Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 17, 289–304.

  44. Kasurinen, A., Riikonen, J., Oksanen, E., Vapaavuori, E., & Holopainen, T. (2006). Chemical composition and decomposition of silver birch leaf litter produced under elevated CO2 and O3. Plant Soil, 292, 25–43.

  45. Kasurinen, A., Silfver, T., Rousi, M., & Mikola, J. (2017). Warming and ozone exposure effects on silver birch (Betula pendula Roth) leaf litter quality, microbial growth and decomposition. Plant and Soil, 414(1-2), 127–142.

  46. Kendall, M. G. (1975). Rank correlation methods (4th ed.). London: Charles Griffin.

  47. Kim, J. S., Chappelka, A. H., & Miller-Goodman, M. S. (1998). Decomposition of blackberry and broomsedge bluestem as influenced by ozone. Journal of Environmental Quality, 27(4), 953–960.

  48. Kitao, M., Löw, M., Heerdt, C., Grams, T. E., Häberle, K. H., & Matyssek, R. (2009). Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environmental Pollution, 157(2), 537–544.

  49. Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28, 1313–1320.

  50. Kline, L. J., Davis, D. D., Skelly, J. M., Savage, J. E., & Ferdinand, J. (2008). Ozone sensitivity of 28 plant selections exposed to ozone under controlled conditions. Northeastern Naturalist, 15(1), 57–67.

  51. Koffi, B., Szopa, S., Cozic, A., Hauglustaine, D., & van Velthoven, P. (2010). Present and future impact of aircraft, road traffic and shipping emissions on global tropospheric ozone. Atmospheric Chemistry and Physics, 10, 11681–11705.

  52. Kurz-Besson, C., Coûteaux, M. M., Thiéry, J. M., Berg, B., & Remacle, J. (2005). A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement. Soil Biology and Biochemistry, 37(12), 2315–2318.

  53. Larson, J. L., Zak, D. R., & Sinsabaugh, R. L. (2002). Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal, 66(6), 1848–1856.

  54. Levenberg, K. (1944). A method for the solution of certain non-linear problems in the least squares. Quarterly of Applied Mathematics, 2, 164–168.

  55. Liu, L., King, J. S., & Giardina, C. P. (2005). Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiology, 25, 1511–1522.

  56. Liu, L., King, J. S., Giardina, C. P., & Booker, F. L. (2009). The influence of chemistry, production and community composition on leaf litter decomposition under elevated atmospheric CO2 and tropospheric O3 in a northern hardwood ecosystem. Ecosystems, 12(3), 401–416.

  57. Lousier, J. D., & Parkinson, D. (1976). Litter decomposition in a cool-temperate deciduous forest. Canadian Journal of Botany, 54(5-6), 419–436.

  58. Lu, C., Cao, Y., He, C., Bao, X., Fang, R., Wang, Y., Chen, X., Shi, Y., & Li, Q. (2016). Effects of elevated O3 and CO2 on the relative contribution of carbohydrates to soil organic matter in an agricultural soil. Soil and Tillage Research, 159, 47–55.

  59. Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13, 163–171.

  60. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

  61. Meentemeyer, V. (1978). Microclimate and lignin control on litter decomposition rates. Ecological Society of America, 59(3), 465–472.

  62. Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., & Pleijel, H. (2007a). A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment, 41(12), 2630–2643.

  63. Mills, G., Hayes, F., Jones, M. L. M., & Cinderby, S. (2007b). Identifying ozone-sensitive communities of (semi-) natural vegetation suitable for mapping exceedance of critical levels. Environmental Pollution, 146, 736–743.

  64. Mills, G., Wagg, S., & Harmens, H. (2013). Ozone pollution: impacts on ecosystem services and biodiversity. ICP Vegetation Programme Coordination Centre. Bangor: Centre for Ecology and Hydrology.

  65. Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., et al. (2018). Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa Science of the Anthropocene, 6, 47.

  66. Morgan, P. B., Mies, T. A., Bollero, G. A., Nelson, R. L., & Long, S. P. (2006). Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytologist, 170(2), 333–343.

  67. Nali, C., Paoletti, E., Marabottini, R., Della Rocca, G., Lorenzini, G., Paolacci, A. R., Ciaffi, M., & Badiani, M. (2004). Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmospheric Environment, 38(15), 2247–2257.

  68. Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322–331.

  69. Paoletti, E. (2007). Ozone impacts on forests. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2(068), 13.

  70. Paoletti, E., De Marco, A., Beddows, D. C., Harrison, R. M., & Manning, W. J. (2014). Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environmental Pollution, 192, 295–299.

  71. Paoletti, E., Materassi, A., Fasano, G., Hoshika, Y., Carriero, G., Silaghi, D., & Badea, O. (2017). A new-generation 3D ozone FACE (free air controlled exposure). Science of the Total Environment, 575, 1407–1414.

  72. Parsons, S. A., & Congdon, R. A. (2008). Plant litter decomposition and nutrient cycling in north Queensland tropical rain-forest communities of differing successional status. Journal of Tropical Ecology, 24, 317–327.

  73. Parsons, W. F. J., Bockheim, J. G., & Lindroth, R. L. (2008). Independent, interactive and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems, 11, 505–519.

  74. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439–473.

  75. Pritsch, K., Ernst, D., Fleischmann, F., Gayler, S., Grams, T. E. E., Göttlein, A., Heller, W., Koch, N., Lang, H., Matyssek, R., et al. (2008). Plant and soil system responses to ozone after 3 years in a lysimeter study with juvenile beech (Fagus sylvatica L.). Water, Air and Soil Pollution, 8(2), 139–154.

  76. Pritsch, K., Esperschütz, J., Haesler, F., Raidl, S., Winkler, B., & Schloter, M. (2009). Structure and activities of ectomycorrhizal and microbial communities in the rhizosphere of Fagus sylvatica under ozone and pathogen stress in a lysimeter study. Plant and Soil, 323(1-2), 97–109.

  77. Proietti, C., Anav, A., De Marco, A., Sicard, P., & Vitale, M. (2016). A multi-sites analysis on the ozone effects on gross primary production of European forests. Science of the Total Environment, 556, 1–11.

  78. Rahman, M. M., Tsukamoto, J., Rahman, M. M., Yoneyama, A., & Mostafa, K. M. (2013). Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology, 29(6), 540–553.

  79. Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States, 94, 13730–13734.

  80. Rovira, P., & Vallejo, V. R. (2000). Decomposition of Medicago sativa debris incubated at different depths under Mediterranean climate. Arid Soil Research and Rehabilitation, 14, 265–280.

  81. Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates MAKESENS–The excel template application (p. 35). Helsinki: Finnish Meteorological Institute.

  82. Scherzer, A. J., Rebbeck, J., & Boerner, R. E. J. (1998). Foliar nitrogen dynamics and decomposition of yellow-poplar and eastern white pine during four seasons of exposure to elevated ozone and carbon dioxide. Forest Ecology and Management, 109(1-3), 355–366.

  83. Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: an analysis of global change (3rd ed.). Oxford: Academic Press.

  84. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.

  85. Shang, B., Feng, Z., Li, P., & Calatayud, V. (2018). Elevated ozone affects C, N and P ecological stoichiometry and nutrient resorption of two poplar clones. Environmental Pollution, 234, 136–144.

  86. Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., & Bauer, S. E. (2009). Improved attribution of climate forcing to emissions. Science, 326(5953), 716–718.

  87. Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791–794.

  88. Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in Terrestrial Ecosystems. Studies in Ecology (Vol. 5). Oxford, UK: Blackwell Scientific.

  89. Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, I, II, and III. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings. Series A. Mathematical Sciences, 53, 386–392 521–525, and 1397–1412.

  90. Thompson, A. M. (1992). The oxidizing capacity of the earth’s atmosphere: probable past and future changes. Science, 256(5060), 1157–1165.

  91. Tiwari, S., & Agrawal, M. (2018). Tropospheric ozone budget: formation, depletion and climate change. In Tropospheric Ozone and its Impacts on Crop Plants (pp. 31–64). Cham: Springer.

  92. Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Hajima, T., Jones, C., Shevliakova, E., Tjiputra, J., et al. (2014). Changes in soil organic carbon storage predicted by earth system models during the 21st century. Biogeosciences, 11, 2341–2356.

  93. Urli, M., Lamy, J. B., Sin, F., Burlett, R., Delzon, S., & Porté, A. J. (2015). The high vulnerability of Quercus robur to drought at its southern margin paves the way for Quercus ilex. Plant Ecology, 216, 177–187.

  94. van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y., & Hungate, B. A. (2014). Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science, 360(6389), 508–509.

  95. van Soest, P. J., & Wine, R. H. (1968). Determination of lignin and cellulose in acid-detergent fibre with permanganate. Association of Official Analytical Chemists Journal, 51, 780–785.

  96. van Vuurren, D. P., & Carter, T. R. (2014). Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Climatic Change, 122, 415–429.

  97. Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38(21), 3431–3442.

  98. Vitale, M., Savi, F., Baldantoni, D., & Attorre, F. (2014). Modeling of early stage litter decomposition in Mediterranean mixed forests: functional aspects affected by local climate. iForest-Biogeosciences and Forestry, 8(4), 517.

  99. Wamelink, G. W. W., Wieggers, H. J. J., Reinds, G. J., Kros, J., Mol-Dijkstra, J. P., Van Oijen, M., & De Vries, W. (2009). Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. Forest Ecology and Management, 258(8), 1794–1805.

  100. Watanabe, M., Hoshika, Y., Inada, N., Wang, X., Mao, Q., & Koike, T. (2013). Photosynthetic traits of Siebold’s beech and oak saplings grown under free-air ozone exposure. Environmental Pollution, 174, 50–56.

  101. Wieder, R. K., & Lang, G. E. (1982). A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology, 63, 1636–1642.

  102. Wieder, W. R., Bonan, G. B., & Allison, S. D. (2013). Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 3, 909–912.

  103. Williamson, J., Mills, G., & Freeman, C. (2010). Species-specific effects of elevated ozone on wetland plants and decomposition processes. Environmental Pollution, 158(5), 1197–1206.

  104. Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827.

  105. Yendrek, C. R., Koester, R. P., & Ainsworth, E. A. (2015). A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops. Journal of experimental botany, 66(22), 7101–7112.

  106. Yendrek, C. R., Erice, G., Montes, C. M., Tomaz, T., Sorgini, C. A., Brown, P. J., McIntyre, L. M., Leakey, A. D. B., & Ainsworth, E. A. (2017). Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner. Plant, Cell and Environment, 40(12), 3088–3100.

  107. Yu, D. Y., Bae, W., Kang, N., Banks, M. K., & Choi, C. H. (2005). Characterization of gaseous ozone decomposition in soil. Soil and Sediment Contamination: An International Journal, 14(3), 231–247.

  108. Yuan, X., Calatayud, V., Gao, F., Fares, S., Paoletti, E., Tian, Y., & Feng, Z. (2016). Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant, Cell and Environment, 39, 2276–2287.

  109. Yuan, X., Feng, Z., Liu, S., Shang, B., Li, P., Yansen, X., & Paoletti, E. (2017). Concentration- and flux-based dose-responses of isoprene emission from poplar leaves and plants exposed to an ozone concentration gradient. Plant, Cell and Environment, 40, 1960–1971.

Download references

Acknowledgements

This work was financially supported by the Fondazione Cassa di Risparmio di Firenze (2013/7956) and the LIFE15 ENV/IT/000183 project MOTTLES.

Author information

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by W. Amitrano and M. Vitale. The O3-FACE facility in the Sesto Fiorentino experimental area (Florence) was set up and made available for experimental activities by E. Paoletti. The first draft of the manuscript was written by M. Vitale, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Correspondence to Marcello Vitale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vitale, M., Amitrano, W., Hoshika, Y. et al. Plant Species-Specific Litter Decomposition Rates Are Directly Affected by Tropospheric Ozone: Analysis of Trends and Modelling. Water Air Soil Pollut 230, 311 (2019). https://doi.org/10.1007/s11270-019-4339-y

Download citation

Keywords

  • Litter decay
  • Mediterranean climate conditions
  • Olson’s model
  • Quercus species
  • Theil-Sen estimator