Advertisement

Water, Air, & Soil Pollution

, 230:276 | Cite as

Adsorption Kinetic, Isotherm and Thermodynamic of 2,4-Dichlorophenoxyacetic Acid Herbicide in Novel Alternative Natural Adsorbents

  • Caroline Aparecida Matias
  • Pâmela Becalli Vilela
  • Valter Antonio Becegato
  • Alexandre Tadeu PaulinoEmail author
Article

Abstract

The aim of this work was to study the adsorption kinetic, isotherm, and thermodynamic of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in raw and boiling-treated sterile bracts of Araucaria angustifolia as novel alternative natural adsorbents. The sterile bracts were characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy. The adsorption and removal of 2,4-D from aqueous solutions were conducted at different contact times, bract granulometries, solution pH, bract masses, initial 2,4-D concentrations, and temperatures. The adsorption kinetic, mechanism, and thermodynamic were evaluated using pseudo-first- and pseudo-second-order kinetic models, non-linear Langmuir, Freundlich, Redlich-Peterson and Sips isotherm models, and Gibbs free energy, enthalpy, and entropy. The maximum removal efficiency of 2,4-D was found with 720 min of contact, 5.0 g of bract containing 31 micron particle sizes, pH = 2.0, and room temperature. The best kinetic and isotherm fits were found with the non-linear pseudo-second-order kinetic model and non-linear Freundlich isotherm model, respectively. Therefore, the adsorption mechanism in the bract structure takes place with multi-layer formation and multi-site interactions due to chemisorption reactions. The adsorption process is thermodynamically favorable, spontaneous, and exothermic. Overall, sterile bract of Araucaria angustifolia could be useful as alternative natural adsorbent for the treatment of water and wastewater contaminated with 2,4-D, mitigating the environmental pollution caused by agricultural crops.

Graphical Abstract

Keywords

Sterile bract 2,4-Dichlorophenoxyacetic acid Adsorption Kinetic Isotherm Thermodynamic 

Notes

Acknowledgements

ATP and CAM gratefully acknowledge the Brazilian fostering agency Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina–Brasil (FAPESC) for the master scholarship.

Funding Information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)-Finance Code 001.

References

  1. Assad, E. D., Ribeiro, R. R. R., & Nakai, A. L. (2018). Agricultural sector. assessments and how an increase in temperature may have an impact on agriculture in Brazil and mappingof the current and future situation. In C. A. Nobre, J. A. Marengo, & W. R. Soares (Eds.), Climate change risks in Brazil. New York: Springer.Google Scholar
  2. Bakatula, E. N., Richard, D., Neculita, C. M., & Zagury, G. J. (2018). Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25, 7823–7833.  https://doi.org/10.1007/s11356-017-1115-7.CrossRefGoogle Scholar
  3. Bernieri, T., Rodrigues, D., Barbosa, I. R., Ardenghi, P. G., & Silva, L. B. (2019). Occupational exposure to pesticides and thyroid function in Brazilian soybean farmers. Chemosphere, 128, 425–429.  https://doi.org/10.1016/j.chemosphere.2018.11.124.CrossRefGoogle Scholar
  4. Carvalho, C. O., Rodrigues, D. L. C., Lima, E. C., Umpierres, C. S., Chaguezac, D. F. C., & Machado, F. M. (2019). Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). Environmental Science and Pollution Research, 26, 4690–4702.  https://doi.org/10.1007/s11356-018-3954-2.CrossRefGoogle Scholar
  5. Darezereshki, E., Darban, A. K., Abdollahy, M., & Jamshidi-Zanjani, A. (2018). Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: Kinetics and thermodynamic. Environmental Nanotechnology, Monitoring and Management, 10, 51–62.  https://doi.org/10.1016/j.enmm.2018.04.002.CrossRefGoogle Scholar
  6. Daudt, R. M., Avena-Bustillos, R. J., Williams, T., Wood, D. F., Külkamp-Guerreiro, I. C., Marczak, L. D. F., & McHugh, T. H. (2016). Comparative study on properties of edible films based on pinhão (Araucaria angustifolia) starch and flour. Food Hydrocolloids, 60, 279–287.  https://doi.org/10.1016/j.foodhyd.2016.03.040.CrossRefGoogle Scholar
  7. Daudt, R. M., Sinrod, A. J. G., Avena-Bustillos, R. J., Külkamp-Guerreiro, I. C., Marczak, L. D. F., & McHugh, T. H. (2017). Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder. Food Hydrocolloids, 71, 60–67.  https://doi.org/10.1016/j.foodhyd.2017.04.033.CrossRefGoogle Scholar
  8. Doczekalska, B., Kuśmierek, K., Świątkowski, A., & Bartkowiak, M. (2018). Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials. Journal of Environmental Science and Health, Part B, 53, 290–297.  https://doi.org/10.1080/03601234.2017.1421840.CrossRefGoogle Scholar
  9. Ferreira, R. M., Oliveira, N. M., Lima, L. L. S., Campista, A. N. D. M., & Stapelfeldt, D. M. A. (2019). Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified. Environmental Science and Pollution Research, 1–8.  https://doi.org/10.1007/s11356-018-3752-x.CrossRefGoogle Scholar
  10. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.  https://doi.org/10.1016/j.cej.2009.09.013.CrossRefGoogle Scholar
  11. Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385–471.Google Scholar
  12. García-Delgado, C., Barba-Vicente, V., Marín-Benito, J. M., Igual, M., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2019). Influence of different agricultural management practices on soil microbial community over dissipation time of two herbicides. Science of the Total Environment, 646, 1478–1488.  https://doi.org/10.1016/j.scitotenv.2018.07.395.CrossRefGoogle Scholar
  13. Georgin, J., Drumm, F. C., Grassi, P., Franco, D., Allasia, D., & Dotto, G. L. (2018). Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents. Water Science and Technology, 78, 1693–1703.  https://doi.org/10.2166/wst.2018.448.CrossRefGoogle Scholar
  14. González, A. N., Fortunato, M. S., Gallego, A., & Korol, S. E. (2017). Simultaneous biodegradation and detoxification of the herbicides 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid in a continuous biofilm reactor. Water, Air, and Soil Pollution, 228, 300–307.  https://doi.org/10.1007/s11270-017-3468-4.CrossRefGoogle Scholar
  15. Goscianska, J., & Olejnik, A. (2019). Removal of 2,4-D herbicide from aqueous solution by aminosilane-grafted mesoporous carbons. Adsorption, 25, 345–355.  https://doi.org/10.1007/s10450-019-00015-7.CrossRefGoogle Scholar
  16. Hameed, B. H., Salman, J. M., & Ahmad, A. L. (2009). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials, 163, 121–126.  https://doi.org/10.1016/j.jhazmat.2008.06.069.CrossRefGoogle Scholar
  17. Harrache, Z., Abbas, M., Aksil, T., & Trari, M. (2018). Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchemical Journal, 144, 180–189.  https://doi.org/10.1016/j.microc.2018.09.004.CrossRefGoogle Scholar
  18. Hue, H. K., Anh, L. V., & Trong, D. B. (2018). Study of the adsorption of 2,4-dichlorophenoxyacetic acid from the aqueous solution onto activated carbon. The Vietnam Journal of Chemistry, 56, 208–213.  https://doi.org/10.1002/vjch.201800015.CrossRefGoogle Scholar
  19. Ibama (2017) Vendas por classes de usos dos pesticidas formulados. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais. Accessed 21 Feb 2019.
  20. Jayaswal, K., Sahu, V., & Gurjar, B. R. (2018). Water pollution, human health and remediation. In S. Bhattacharya, A. Gupta, A. Gupta, & A. Pandey (Eds.), Water Remediation: Energy, Environment, and Sustainability. Singapore: Springer.Google Scholar
  21. Jiang, Y., Liu, B., Xu, J., Pan, K., Hou, H., Hu, J., & Yang, J. (2018). Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydrate Polymers, 182, 106–114.  https://doi.org/10.1016/j.carbpol.2017.10.097.CrossRefGoogle Scholar
  22. Kamga, F. T. (2018). Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Applied Water Science, 9, 1–7.  https://doi.org/10.1007/s13201-018-0879-3.CrossRefGoogle Scholar
  23. Kaya, I., Yilmaz, M., Kaya, M. M., Kukurt, A., & Karapehlivan, M. (2019). The effects of carbaryl and 2,4- dichlorophenoxyacetic acid on oxidative stress index in Capoeta capoeta (Guldensteadt 1773). Pakistan Journal of Zoology, 51, 189–193.  https://doi.org/10.17582/journal.pjz/2019.51.1.189.193.CrossRefGoogle Scholar
  24. Kermani, M., Mohammadi, F., Kakavandi, B., Esrafili, A., & Rostamifasih, Z. (2018). Simultaneous catalytic degradation of 2,4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS). Journal of Physics and Chemistry of Solids, 117, 49–59.  https://doi.org/10.1016/j.jpcs.2018.02.009.CrossRefGoogle Scholar
  25. Kuśmierek, K., Szala, M., & Świątkowski, A. (2016). Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis. Journal of the Taiwan Institute of Chemical Engineers, 63, 371–378.  https://doi.org/10.1016/j.jtice.2016.03.036.CrossRefGoogle Scholar
  26. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295.  https://doi.org/10.1021/ja02268a002.CrossRefGoogle Scholar
  27. Li, Q., Sun, J., Ren, T., Guo, L., Yang, Z., Yang, Q., & Chen, H. (2017). Adsorption mechanism of 2,4- Dichlorophenoxyacetic acid onto nitric acid modified activated carbon fiber. Environmental Technology, 39, 895–906.  https://doi.org/10.1080/09593330.2017.1316318.CrossRefGoogle Scholar
  28. Lima, E. C., Adebayo, M. A., & Machado, F. M. (2015). Kinetic and equilibrium models of adsorption. In C. Bergmann & F. Machado (Eds.), Carbon nanomaterials as adsorbents for environmental and biological applications (pp. 33–69). Berlin: Springer.CrossRefGoogle Scholar
  29. Mahmoud, M. E., Nabil, G. M., El-Mallah, N. M., Bassiouny, H. I., Kumar, S., & Abdel-Fattah, T. M. (2016). Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 a dye from water by modified Switchgrass Biochar adsorbent. Journal of Industrial and Engineering Chemistry, 2867, 1–12  https://doi.org/10.1016/j.jiec.2016.03.020.Google Scholar
  30. Mandal, S., Sarkar, B., Igalavithana, A. D., Ok, Y. S., Yang, X., Lombi, E., & Bolan, N. (2017). Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties. Bioresource Technology, 246, 160–167.  https://doi.org/10.1016/j.biortech.2017.07.073.CrossRefGoogle Scholar
  31. Martín-Lara, M. A., Pérez, A., Vico-Pérez, M. A., Calero, M., & Blázquez, G. (2019). The role of temperature on slow pyrolysis of olive cake for the production of solid fuels and adsorbents. Process Safety and Environment Protection, 121, 209–220.  https://doi.org/10.1016/j.psep.2018.10.028.CrossRefGoogle Scholar
  32. Milosavljević, N. B., Ristić, M. D., Perić-Grujić, A. A., Filipović, J. M., Strbac, S. B., Rakocević, Z. L., & Krusić, M. T. K. (2011). Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388, 59–69.  https://doi.org/10.1016/j.colsurfa.2011.08.011.CrossRefGoogle Scholar
  33. Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-moghadam, F., Nourmoradi, H., Goudarzi, B., & Dindarloo, K. (2018). Preparation, characterization and Cr(VI) adsorption evaluation of naOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresource Technology, 258, 48–56.  https://doi.org/10.1016/j.biortech.2018.02.106.CrossRefGoogle Scholar
  34. Novais, R. M., Carvalheiras, J., Tobaldi, D. M., Seabra, M. P., Pullar, R. C., & Labrincha, J. Á. (2018). Synthesis of porous biomass fly ash-based geopolymer spheres for efficient removal of methylene blue from wastewaters. Journal of Cleaner Production, 207, 350–362.  https://doi.org/10.1016/j.jclepro.2018.09.265.CrossRefGoogle Scholar
  35. Nunes, A. R., Araújo, K. R. O., & Moura, A. O. (2019). 2,4-dichlorophenoxyactic acid herbicide removal from water using chitosan. Research on Chemical Intermediates, 45, 315–322.  https://doi.org/10.1007/s11164-018-3604-9.CrossRefGoogle Scholar
  36. Pandiarajana, A., Kamaraj, R., Vasudevan, S., & Vasudevan, A. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329–341.  https://doi.org/10.1016/j.biortech.2018.04.005.CrossRefGoogle Scholar
  37. Pose-Juan, E., Sánchez-Martín, M. J., Andrades, M. S., Rodríguez-Cruz, M. S., & Herrero-Hernández, E. (2015). Pesticide residues in vineyard soils from Spain: Spatial and temporal distributions. Sci Total Environ, 514, 351–358.  https://doi.org/10.1016/j.scitotenv.2015.01.076.CrossRefGoogle Scholar
  38. Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308.  https://doi.org/10.1016/j.biortech.2014.05.029.CrossRefGoogle Scholar
  39. Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63, 1024–1026.  https://doi.org/10.1021/j150576a611.CrossRefGoogle Scholar
  40. Royer, B., Cardoso, N. F., Lima, E. C., Vaghetti, J. C. P., Simon, N. M., Calvete, T., & Veses, R. C. (2009). Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—Kinetic and equilibrium study. Journal of Hazardous Materials, 164, 1213–1222.  https://doi.org/10.1016/j.jhazmat.2008.09.028.CrossRefGoogle Scholar
  41. Russo, V., Trifuoggi, M., Serio, M. D., & Tesser, R. (2017). Fluid-Solid Adsorption in Batch and Continuous Processing: A Review and Insights into Modeling. Chemical Engineering and Technology, 40, 799–820.  https://doi.org/10.1002/ceat.201600582.CrossRefGoogle Scholar
  42. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.  https://doi.org/10.1016/j.desal.2011.07.019.CrossRefGoogle Scholar
  43. Salman, J. M., & Hameed, B. H. (2010). Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination, 256, 129–135.  https://doi.org/10.1016/j.desal.2010.02.002.CrossRefGoogle Scholar
  44. Sips, R. (1948). Combined form of Langmuir and Freundlich equations. The Journal of Chemical Physics, 16, 490–495.CrossRefGoogle Scholar
  45. Sivasamy, A., Nethaj, S., & Josmin, L. N. L. (2012). Equilibrium, kinetic and thermodynamic studies on the biosorption of reactive acid dye on Enteromorpha flexuosa and Gracilaria corticata. Environmental Science and Pollution Research, 19, 1687–1695.  https://doi.org/10.1007/s11356-011-0666-2.CrossRefGoogle Scholar
  46. Spuler, M. J., Briceño, G., Duprat, F., Jorquera, M., Céspedes, C., & Palma, G. (2019). Sorption kinetics of 2,4-D and diuron herbicides in a urea-fertilized andisol. Journal of Soil Science and Plant Nutrition.  https://doi.org/10.1007/s42729-019-00031-0.CrossRefGoogle Scholar
  47. Surovka, D., & Pertile, E. (2017). Sorption of Iron, Manganese, and copper from aqueous solution using orange peel: optimization, isothermic, kinetic, and thermodynamic studies. Polish Journal of Environmental Studies, 26, 795–800.  https://doi.org/10.15244/pjoes/60499.CrossRefGoogle Scholar
  48. Vibrans, A. C., Sevegnani, L., Uhlmann, A., Schom, L. A., Sobral, M. G., Gasper, A. L., Lingner, D. V., Brogni, E., Klemz, G., Godoy, M. B., & Verdi, M. (2011). Structure of mixed ombrophyllous forests with Araucaria angustifolia (Araucariaceae) under external stress in Southern Brazil. International Journal of Tropical Biology, 59, 1371–1387.  https://doi.org/10.15517/rbt.v0i0.3405.CrossRefGoogle Scholar
  49. Zhu, S., Xia, M., Chu, Y., Khan, M. A., Lei, W., Wang, F., Muhmood, T., & Wang, A. (2019). Adsorption and desorption of Pb(II) on L-Lysine modified montmorillonite and the simulation of interlayer structure. Applied Clay Science, 169, 40–47.  https://doi.org/10.1016/j.clay.2018.12.017.CrossRefGoogle Scholar
  50. Zortea-Guidolin, M. E. B., Demiate, I. M., Godoy, R. C. B., Scheer, A. P., Grewell, D., & Jane, J. L. (2017). Structural and functional characterization of starches from Brazilian pine seeds (Araucaria angustifolia). Food Hydrocolloids, 63, 19–26.  https://doi.org/10.1016/j.foodhyd.2016.08.022.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Postgraduate Program in Environmental SciencesSanta Catarina State UniversityLagesBrazil
  2. 2.Department of Food and Chemical EngineeringSanta Catarina State UniversityPinhalzinhoBrazil

Personalised recommendations