Water, Air, & Soil Pollution

, 230:264 | Cite as

Removal of Cu and Zn from Aqueous Solutions by Selected Tree Leaves with Phytoremediation Potential

  • Adnan M. MassadehEmail author
  • Saif Addeen A. Massadeh


In this study, some different selected plant leaves grown in Jordan such as Citrus limon (Rutaceae), Ceratonia siliqua L., Olea europaea (Oleaceae), Washingtonia filifera, and Myoporum (Myoporaceae) were examined for removal of copper (Cu) and zinc (Zn) ions from aqueous solutions. Cu and Zn were analyzed by atomic absorption spectrometry. A pH S-2 acidometer was used for determining the acidity of leaves solution system. Our findings showed the plants leaves were relatively efficient for removal of Cu and Zn compared to activated carbon. Removal of a 5 mg/L aqueous metal solution of Cu and Zn was treated with 2.5 g oven-dried plant in a 50 mL deionized water. The removal of Cu and Zn was expressed in terms of a time function ranged between 0 and 192 hours of contact time. The uptake of Cu and Zn by plant leaves was arranged in the following order:
  1. (i)

    Cu: Activated carbon > Washingtonia filifera > Ceratonia siliqua L. > Olea europaea (Oleaceae) > Myoporum (Myoporaceae) > Citrus limon (Rutaceae)

  2. (ii)

    Zn: Activated carbon > Olea europaea (Oleaceae) > Citrus limon (Rutaceae) > Ceratonia siliqua L. > Washingtonia filifera > Myoporum (Myoporaceae)



Copper Zinc Tree leaves Uptake AAS Analysis 



Authors are grateful to acknowledge the Deanship of Scientific Research at Jordan University of Science and Technology for providing facilities to perform this research.

Funding Information

This study was funded by the Deanship of Scientific Research at Jordan University of Science and Technology.


  1. Ahmadpour, P., Ahmadpour, F., Mahmud, T., Abdu, A., Soleimani, M., & Hosseini, T. F. (2012). Phytoremediation of heavy metals: a green technology. African Journal of Biotechnology, 11, 14036–14043.Google Scholar
  2. Alfarra, S. R., Ali, E. N., & Yusoff, M. M. (2014). Removal of heavy metals bynatural adsorbent: review. International Journal of Bioscience, 4(7), 130–139.Google Scholar
  3. Al-Fartusie, F. S., & Mohssan, S. N. (2017). Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Science, 5(3), 127–136.Google Scholar
  4. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals: concepts and applications. Chemosphere, 91(7), 869–881.Google Scholar
  5. Bales, C. W., Ritchie, C. S., & Wellman, N. S. (2009). Handbook of Clinical Nutrition and Aging, New York: Springer, 156-181.Google Scholar
  6. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.Google Scholar
  7. Belay, K., & Abisa, Z. (2015). Developing a method for trace metal analysis in spices using spectroscopic techniques: a review. International Journal of Chemistry and Natural Science, 3, 195–199.Google Scholar
  8. Bhattacharya, T., Banerjee, D. K., & Gopal, B. (2006). Heavy metal uptake by Scirpus littoralis Schrad from fly ash dosed and metal spiked soils. Environmental Monitoring and Assessment, 121(1-3), 363–380.Google Scholar
  9. Divrikli, U., Horzum, N., Soylak, M., & Elci, L. (2006). Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. International Journal of Food and Technology, 41(6), 712–716.Google Scholar
  10. Duran, A., Tuzen, M., & Soylak, M. (2007). Trace element levels in some dried fruit samples from Turkey. International Journal of Food Science and Nutrition, 59, 581–589.Google Scholar
  11. Dutta, T. K., & Mukta, V. (2012). Trace elements. Medicine Update, 22, 353–357.Google Scholar
  12. Ferniza-Garcia, F., A. Amaya-Chavez, G. Roa-Morales, & C.E. Barrera-Diaz (2017). Removal of Pb, Cu, Cd, and Zn present in aqueous solution using coupled electrocoagulation-phytoremediation treatment. International Journal of Electrochemistry, 7681451, 11 pages.Google Scholar
  13. Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26(4), 235–244.Google Scholar
  14. Gharaibeh, S. H., Abu-El-Sha’r, W. Y., & Al-Kofahi, M. M. (1998). Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products. Water Research, 32(2), 498–502.Google Scholar
  15. Gharaibeh, S. H., Abu-El-Sha’r, W. Y., & Al-Kofahi, M. M. (1999). Removal of selected heavy metals from aqueous solutions using processed solid by product from the Jordanian oil shale refining. Environmental Geology, 39(2), 113–116.Google Scholar
  16. Ghazala, Y., Fizza, I., Muniba, I., & Vania, M. (2018). Monitoring and risk assessment due to presence of heavy metals and pesticides in tea samples. Food of Science and Technology, 38(4), 625–628.Google Scholar
  17. Hänsch, R., & Mendel, R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266.Google Scholar
  18. Ijaola, T. O., Babajide, S. O., Taiwo, A. A., Osunkiyesi, A. A., Akindele, O. I., & Sojobi, O. A. (2015). Phytoremediation of heavy metals (Cu, Zn, and Pb) contaminated water using water Hacinth (Eichhornia crassipes). IOSR Journal of Applied Chemistry, 8(5), 65–72.Google Scholar
  19. Izah, S. C., Chakrabatry, N., & Srivastav, A. L. (2016). A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures. Exposure Health, 8, 285–304.Google Scholar
  20. Jalbani, N., Ahmed, F., Kazi, T. G., Rashid, U., Munshi, A. B., & Kandhro, A. (2010). Determination of essential elements (Cu, Fe and Zn) in juices of commercially available in Pakistan. Food and chemical toxicology, 48(10), 2737–2740.Google Scholar
  21. Kodama, H., & Fujisawa, C. (2009). Copper metabolism and inherited copper transport disorders: molecular mechanisms, screening, and treatment. Metallomics, 1(1), 42–52.Google Scholar
  22. Laghlimi, M., Baghdad, B., El Hadi, H., & Bouabdli, A. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: A Review. Open Journal of Ecology, 5, 375–388.Google Scholar
  23. Linder, M. C., Wooten, L., Cerveza, P., Cotton, S., Shulze, R., & Lomeli, N. (1998). Copper transport. American Journal of Clinical Nutrition, 67(5), 965S–971S.Google Scholar
  24. Malakootian, M., Tahergorabi, M., Daneshpajooh, M., & Amirtaheri, K. (2011). Determination of Pb, Cd, Ni, and Zn concentrations in canned fish in Southern Iran. Sacha Journal of Environmental Studies, 1(1), 94–100.Google Scholar
  25. Maretm, W., & Sandstead, H. H. (2006). Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 20, 3–18.Google Scholar
  26. Massadeh, A. M., & Al-Massaedh, A.-A. T. (2018). Determination of heavy metals in canned fruits and vegetables sold in Jordan market. Environment Science and Pollution Research, 25, 1914–1920.Google Scholar
  27. Massadeh, A. M., & Massadeh, H. A. (2019). Uptake of Cd and Pb from aqueous solutions using selected tree leaves through phytoremediation. Water, Air & Soil Pollution Journal, 230, 216.Google Scholar
  28. Massadeh, A. M., Baker, H. M., Obeidat, M. M., Shakatreh, S. K., Obeidat, B. A., & Abu-Nameh, E. S. (2011). Analysis of lead and cadmium in selected leafy and non-leafy edible vegetables using atomic absorption spectrometry. Soil and Sediment Contamination: An international Journal, 20, 306–314.Google Scholar
  29. Massadeh, A. M., El-Rjoob, A.-W. O., & Al-Omari, M. N. (2016). Assessment of heavy metals in different parts of Ruta chalepensis L. (Rutaceae) medicinal plant and soil samples in selected zones in Jordan. Soil and Sediment Contamination: International Journal, 25(6), 587–596.Google Scholar
  30. Moosavi, S. G., & Seghatoleslami, M. J. (2013). Phytoremediation: a review. Advance in Agriculture and Biology, 1, 5–11.Google Scholar
  31. Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2008). Phytofiltration of mercury-contaminated water: volatilization and plant-accumulation aspects. Environmental and Experimental Botany, 62(1), 78–85.Google Scholar
  32. Murugavelh, S., & Vinothumar, D. (2010). Removal of heavy metals from wastewater using different biosorbents. Current World Environment, 5(2), 299–304.Google Scholar
  33. Nolan, K. (2003). Copper toxicity syndrome. Journal of Orthomolecular Psychiatry, 12, 270–282.Google Scholar
  34. Nouri, E. N., Khorasani, E. B., Lorestani, E. M., Karami, E. A. H., & Hassani, E. N. Y. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environment Earth Sciences, 59, 315–323.Google Scholar
  35. Obaidat, M. M., Massadeh, M. M., Al-Athamneh, A. M., & Jaradat, Q. M. (2015). Heavy metals in fish from the Red Sea, Arabian Sea, and Indian Ocean: effect of origin, fish species and size and correlation among the metals. Environmental Monitoring and Assessment, 187, 218–225.Google Scholar
  36. Ochonogor, R. O., Atagana Ochonogor, R. O., & Atagana, H. I. (2014). Phytoremediation of heavy metal contaminated soil by Psoralea pinnata. International Journal of Environmental Science and Development, 5, 440–443.Google Scholar
  37. Ogunlana, O. O., Ogunlana, O. E., Akinsanya, A. E., & Ologbenlao, O. O. (2015). Heavy metal analysis of selected soft drinks in Nigeria. Journal of Global Biosciences, 4, 1335–1338.Google Scholar
  38. Olivares, M., Uauy, R., Icaza, G., González, M. (1999). Models to evaluate health risks derived from copper exposure/intake in humans. In: Leone A., Mercer J.F.B. (eds). Copper Transport and its Disorders. Advances in Experimental Medicine and Biology 448, 17–28. Springer, Boston, MA.Google Scholar
  39. Olmedo, P., Hernández, A. F., Pla, A., Femia, P., Navas-Acien, A., & Gil, F. (2013). Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Food and Chemical Toxicology, 62, 299–307.Google Scholar
  40. Osredkar, J., & Sustar, N. (2011). Copper and zinc, biological role and significance of copper/zinc imbalance. Journal of Clinical Toxicology, S3, 1–18.Google Scholar
  41. Plum, L., Rink, L., & Haase, H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environ Research Public Health, 7(4), 1342–1365.Google Scholar
  42. Prasad, S. (2004). Zinc deficiency: its characterization and treatment. Metal İons in Biological Systems, 41, 103–137.Google Scholar
  43. Prasad, M. N. V., & Freitas, H. (2000). Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environmental Pollution, 110, 277–283.Google Scholar
  44. Radwan, M. A., & Salama, A. K. (2006). Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and Chemical Toxicology, 44, 1273–1278.Google Scholar
  45. Ricous, P., Lecuyer, I., & Le Cloirec, P. (1998). Influence of pH on removal of heavy metallic cations by fly ash in aqueous solution. Environmental Technology, 19(10), 1005–1016.Google Scholar
  46. Roger, M. (2011). The minerals you need, USA: Safe Goods Publishing, p 21.Google Scholar
  47. Sardar, K., Shafaqat, A., Hameed, S., Afzal, S., Fatima, S., Shakoor, M. B., Bharwana, S. A., & Tauqeer, H. M. (2013). Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety, 2(4), 172–179.Google Scholar
  48. Shafaghat, A., Salimi, F., Valiei, M., Salehzadeh, J., & Shafaghat, M. (2012). Removal of heavy metals (Pb2+, Cu2+ and Cr3+) from aqueous solutions using five plants materials. African Journal of Biotechnology, 11(4), 852–855.Google Scholar
  49. Sharma, R. K., & Agarwal, M. (2005). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26(2), 301–313.Google Scholar
  50. Sinha, S., Mishra, R. K., Sinam, G., Mallick, S., & Gupta, A. K. (2013). Comparative evaluation of metal phytoremediation potential of trees, grasses and flowering plants from tannery wastewater contaminated soil in relation with physicochemical properties. Soil and Sediment Contamination: An International Journal, 22, 958–983.Google Scholar
  51. Soetan, K. O., Olaiya, C. O., & Oyewole, O. E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science, 4(5), 200–222.Google Scholar
  52. Soylak, M., Saraçoglu, S., Tüzen, M., & Mendil, D. (2005). Determination of trace metals in mushroom samples from Kayseri, Turkey. Journal of Food Chemistry, 92, 649–652.Google Scholar
  53. Taiwo, A. M., Oyeleye, O. F., Majekodunmi, B. J., Anuobi, V. E., Afolabi, A., Idowu, O. E., Ojekunle, Z. O., & Taiwo, O. T. (2019). Evaluation of (Zn, Cr, Cd, Ni, Pb) in staple foods from Lagos and Ogun States, Southwestern Nigeria. Environmental Monitoring and Assessment, 191(3), 167.Google Scholar
  54. Tangahu, B.V., Sheikh Abdullah, S. R., Basri, H., M. Idris, Anuar, N. & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg): Uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1-31.Google Scholar
  55. Tsugutoshi, A. O. K. I. (2004). Copper deficiency and the clinical practice. Japan Medical Association Journal, 47, 365–370.Google Scholar
  56. Tuzen, M., & Soylak, M. (2007). Evaluation of trace element contents in canned foods marketed from Turkey. Journal of Food Chemistry, 102, 1089–1095.Google Scholar
  57. Uauy, R., Olivares, M., & Gonzalez, M. (1988). Essentiality of copper in humans. Journal of Clinical Nutrition, 67(5), 952–959.Google Scholar
  58. Wan Ngah, W. S., & Hanafiah, M. A. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresource Technology, 99(10), 3935–3948.Google Scholar
  59. Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2007). Contribution of selected vitamins and trace elements to ımmune function. Annals of Nutrition and Metabolism, 51(4), 301–323.Google Scholar
  60. Xu, M., & Lu, N. (2012). Research on removing heavy metals from mine tailings. Disaster Advances, 5, 116–120.Google Scholar
  61. Zadeh, J. S. (2013). Removal of heavy metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from aqueous solutions by using xanthium pensylvanicum. Leonardo Journal of Sciences, 23, 97–104.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry and Pharmacognosy Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan
  2. 2.Jordanian Royal Medical ServicesAmmanJordan

Personalised recommendations