Advertisement

Water, Air, & Soil Pollution

, 230:234 | Cite as

The Challenge of Making Wastewater Treatment Plants Composed by Anaerobic Reactors Capable of Removing Nitrogen

  • Taína Martins Magalhães
  • Natalia Cangussu Duarte
  • Thiago de Alencar Neves
  • Daniel Augusto Camargo Bueno
  • Tiago Palladino Delforno
  • Valéria Maia de Oliveira
  • Adriano Luiz TonettiEmail author
Article
  • 71 Downloads

Abstract

Both domestic and industrial effluent treatments contain or produce nitrogen loading during the treatment process. It is important to seek the removal of nitrogen while maintaining the design of existing systems, which are usually composed by the association of anaerobic and aerobic reactors. Thus, in this research, an anaerobic filter (AF) and an upflow anaerobic sludge blanket (UASB) reactors were fed with synthetic effluent enriched with nitrate to compare how these reactors would behave if they became denitrifying reactors. With the application of 100.0 mg NO3-NL−1, the AF presented better efficiency. With respect to the biogas production, the composition was significantly altered: from CH4 and CO2 concentrations close to 70% and 13% without NO3N addition to N2 concentration higher than 85% with addition of 100.0 mg NO3-NL−1. The UASB hydrodynamic profile was modified due to an increase in the mixing behavior along the denitrification stages by biogas production. This was not observed in the AF due to the presence of the support media, which was also responsible for ensuring a greater capacity to withstand denitrification without organic matter being carried out of the system.

Keywords

Nitrate Anaerobic reactor Denitrification Biogas Hydrodynamic DGGE 

Notes

Acknowledgments

The authors would like to thank CNPq (Brazilian National Council for Scientific and Technological Development, process number 311275/2015-0) and FAPESP (São Paulo Research Foundation, process number 2017/07490-4) for financing this study. The authors would also like to acknowledge the service of the Writing Space/General Coordination of UNICAMP for helping translate the original manuscript.

References

  1. Aamir, S., Sutar, S., Singh, S. K., & Baghela, A. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5(2), 74–81.  https://doi.org/10.5943/ppq/5/2/6.CrossRefGoogle Scholar
  2. Al-Zreiqat, I., Abbassi, B., Headley, T., Nivala, J., van Afferden, M., & Müller, R. A. (2018). Influence of septic tank attached growth media on total nitrogen removal in a recirculating vertical flow constructed wetland for treatment of domestic wastewater. Ecological Engineering, 118, 171–178.  https://doi.org/10.1016/J.ECOLENG.2018.05.013.CrossRefGoogle Scholar
  3. An, Y., Yang, F., Chua, H. C., Wong, F. S., & Wu, B. (2008). The integration of methanogenesis with shortcut nitrification and denitrification in a combined UASB with MBR. Bioresource Technology, 99(9), 3714–3720.  https://doi.org/10.1016/J.BIORTECH.2007.07.020.CrossRefGoogle Scholar
  4. Andalib, M., Nakhla, G., McIntee, E., & Zhu, J. (2011). Simultaneous denitrification and methanogenesis (SDM): review of two decades of research. Desalination, 279(1–3), 1–14.  https://doi.org/10.1016/J.DESAL.2011.06.018.CrossRefGoogle Scholar
  5. APHA, AWWA, & WEF. (2012). Standard methods for examination of water and wastewater (22nd ed.). Washington: American Public Health Association.Google Scholar
  6. Azevedo, L. S., Castro, I. M. P., Leal, C. D., Araújo, J. C., & Chernicharo, C. A. L. (2018). Performance and bacterial diversity of bioreactors used for simultaneous removal of sulfide, solids and organic matter from UASB reactor effluents. Water Science and Technology, 78(6), 1312–1323.  https://doi.org/10.2166/wst.2018.403.CrossRefGoogle Scholar
  7. Browner, C. M., Fox, A. J. C., Grubbs, G. H., Rubin, M., Barash, S. Z., Ebner, M. C., & Tudor, L. (2000). Development document for the proposed effluent limitations guidelines and standards for the metal products & Machinery Point Source Category.Google Scholar
  8. Chang, D., Seo, S. C., & Hong, K. H. (2004). Pre Denitri. and post nitri in Adv Ww treat.Pdf. Journal of Industrial and Engineering Chemistry, 10(3), 354–360.Google Scholar
  9. Chernicharo, C. A. L. (2007). Anaerobic reactors. IWA Publishing.Google Scholar
  10. Chernicharo, C. A. L., van Lier, J. B., Noyola, A., & Bressani Ribeiro, T. (2015). Anaerobic sewage treatment: state of the art, constraints and challenges. Reviews in Environmental Science and Bio/Technology, 14(4), 649–679.  https://doi.org/10.1007/s11157-015-9377-3.CrossRefGoogle Scholar
  11. Council Directive 91/271/EEC. (1991). Council directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, The Council of the European Communities.Google Scholar
  12. Cruz, L., Stefanutti, R., Coraucci Filho, B., & Tonetti, A. (2013). Coconut shells as filling material for anaerobic filters. SpringerPlus, 2(1), 655.  https://doi.org/10.1186/2193-1801-2-655.CrossRefGoogle Scholar
  13. Eiroa, M., Kennes, C., & Veiga, M. C. (2004). Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor. Water Research, 38(16), 3495–3502.  https://doi.org/10.1016/J.WATRES.2004.04.055.CrossRefGoogle Scholar
  14. Ersahin, M. E., Ozgun, H., Dereli, R. K., & Ozturk, I. (2011). Anaerobic treatment of industrial effluents: an overview of applications. In Waste water-treatment and reutilization. InTech.Google Scholar
  15. Fang, H. H. P. (2010). Environmental anaerobic technology: applications and new developments. Imperial College Press.Google Scholar
  16. Gavrilescu, M., & Macoveanu, M. (2000). Attached-growth process engineering in wastewater treatment. Bioprocess Engineering, 23(1), 95–106.  https://doi.org/10.1007/s004490050030.CrossRefGoogle Scholar
  17. Han, Y., Liu, J., Guo, X., & Li, L. (2012). Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size. Bioresource Technology, 124, 252–258.  https://doi.org/10.1016/J.BIORTECH.2012.08.008.CrossRefGoogle Scholar
  18. Hanaki, K., & Polprasert, C. (1989). Contribution of methanogenesis to denitrification with an upflow filter. Research Journal of the Water Pollution Control Federation.  https://doi.org/10.2307/25043777.
  19. Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C., Sharon, I., Frischkorn, K. R., et al. (2013). Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 1(1), 22.  https://doi.org/10.1186/2049-2618-1-22.CrossRefGoogle Scholar
  20. Jin, B., & Lant, P. (2004). Flow regime, hydrodynamics, floc size distribution and sludge properties in activated sludge bubble column, air-lift and aerated stirred reactors. Chemical Engineering Science, 59(12), 2379–2388.  https://doi.org/10.1016/J.CES.2004.01.061.CrossRefGoogle Scholar
  21. Jin, X., Wang, F., Liu, G., & Yan, N. (2012). A key cultivation technology for denitrifying granular sludge. Process Biochemistry, 47(7), 1122–1128.  https://doi.org/10.1016/J.PROCBIO.2012.04.001.CrossRefGoogle Scholar
  22. Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093–4103.  https://doi.org/10.1016/J.WATRES.2009.03.001.CrossRefGoogle Scholar
  23. Khan, S. J., Ilyas, S., Javid, S., Visvanathan, C., & Jegatheesan, V. (2011). Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresource Technology, 102(9), 5331–5336.  https://doi.org/10.1016/J.BIORTECH.2010.09.100.CrossRefGoogle Scholar
  24. Klas, S., Mozes, N., & Lahav, O. (2006). A conceptual, stoichiometry-based model for single-sludge denitrification in recirculating aquaculture systems. Aquaculture, 259(1–4), 328–341.  https://doi.org/10.1016/J.AQUACULTURE.2006.05.048.CrossRefGoogle Scholar
  25. Kodera, T., Akizuki, S., & Toda, T. (2017). Formation of simultaneous denitrification and methanogenesis granules in biological wastewater treatment. Process Biochemistry, 58, 252–257.  https://doi.org/10.1016/J.PROCBIO.2017.04.038.CrossRefGoogle Scholar
  26. Kreft, P., Scheible, O. K., & Venosa, A. (1986). Hydraulic studies and cleaning evaluations of ultraviolet disinfection units. Journal (Water Pollution Control Federation).  https://doi.org/10.2307/25043146.
  27. Leal, C. D., Pereira, A. D., Nunes, F. T., Ferreira, L. O., Coelho, A. C. C., Bicalho, S. K., et al. (2016). Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure. Bioresource Technology, 211, 257–266.  https://doi.org/10.1016/J.BIORTECH.2016.03.107.CrossRefGoogle Scholar
  28. Levenspiel, O. (1999). Chemical reaction engineering. Industrial & Engineering Chemistry Research, 38(11), 4140–4143.CrossRefGoogle Scholar
  29. Leverenz, H. L., Haunschild, K., Hopes, G., Tchobanoglous, G., & Darby, J. L. (2010). Anoxic treatment wetlands for denitrification. Ecological Engineering, 36(11), 1544–1551.  https://doi.org/10.1016/J.ECOLENG.2010.03.014.CrossRefGoogle Scholar
  30. Lim, S. J., & Fox, P. (2011). A kinetic analysis and experimental validation of an integrated system of anaerobic filter and biological aerated filter. Bioresource Technology, 102(22), 10371–10376.  https://doi.org/10.1016/J.BIORTECH.2011.09.005.CrossRefGoogle Scholar
  31. Lu, H., Chandran, K., & Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64, 237–254.  https://doi.org/10.1016/J.WATRES.2014.06.042.CrossRefGoogle Scholar
  32. Mac Conell, E. F. A., Almeida, P. G. S., Martins, K. E. L., Araújo, J. C., & Chernicharo, C. A. L. (2015). Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent. Water Science & Technology, 72(1), 116.  https://doi.org/10.2166/wst.2015.154.CrossRefGoogle Scholar
  33. Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.  https://doi.org/10.1016/J.RSER.2015.02.032.CrossRefGoogle Scholar
  34. Mateo-Sagasta Dávila, J., Khassab, G., Klapwijk, A., & van Lier, J. B. (2009). Combination of methanogenesis and denitrification in a UASB reactor for water reclamation applied to small agglomerations. Desalination and Water Treatment, 4(1–3), 177–182.  https://doi.org/10.5004/dwt.2009.373.CrossRefGoogle Scholar
  35. Méndez-Romero, D. C., López-López, A., Vallejo-Rodríguez, R., & León-Becerril, E. (2011). Hydrodynamic and kinetic assessment of an anaerobic fixed-bed reactor for slaughterhouse wastewater treatment. Chemical Engineering and Processing: Process Intensification, 50(3), 273–280.  https://doi.org/10.1016/J.CEP.2011.02.002.CrossRefGoogle Scholar
  36. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.Google Scholar
  37. Muyzer, G. T., Brinkhoff, U., Nübel, C., Santegoeds, H., & Schäfer, C. (1997). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Molecular Microbial Ecology Manual, Kluwer Academics Publishers. Dordrecht, The Netherlands, 1–27.Google Scholar
  38. Niu, W., Guo, J., Lian, J., Ngo, H. H., Li, H., Song, Y., et al. (2018). Effect of fluctuating hydraulic retention time (HRT) on denitrification in the UASB reactors. Biochemical Engineering Journal, 132, 29–37.  https://doi.org/10.1016/J.BEJ.2017.12.017.CrossRefGoogle Scholar
  39. Noyola, A., Padilla-Rivera, A., Morgan-Sagastume, J. M., Güereca, L. P., & Hernández-Padilla, F. (2012). Typology of municipal wastewater treatment technologies in Latin America. CLEAN - Soil, Air, Water, 40(9), 926–932.  https://doi.org/10.1002/clen.201100707.CrossRefGoogle Scholar
  40. Pagáčová, P., Galbová, K., Drtil, M., & Jonatová, I. (2010). Denitrification in USB reactor with granulated biomass. Bioresource Technology, 101(1), 150–156.  https://doi.org/10.1016/J.BIORTECH.2009.08.021.CrossRefGoogle Scholar
  41. Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2006). Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renewable Energy, 31(6), 893–903.  https://doi.org/10.1016/J.RENENE.2005.05.013.CrossRefGoogle Scholar
  42. Peña, M. R., Mara, D. D., & Avella, G. P. (2006). Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Research, 40(3), 445–452.  https://doi.org/10.1016/J.WATRES.2005.11.021.CrossRefGoogle Scholar
  43. Perry, J. H. (1950). Chemical engineers’ handbook. ACS Publications.Google Scholar
  44. Polprasert, C., & Park, H. S. (1986). Effluent denitrification with anaerobic filters. Water Research, 20(8), 1015–1021.  https://doi.org/10.1016/0043-1354(86)90044-8.CrossRefGoogle Scholar
  45. Quaff, A. R., & Guha, S. (2011). Evaluation of mixing and performance of lab-scale upflow anaerobic sludge blanket reactors treating domestic wastewater. Journal of Environmental Engineering, 137(5), 322–331.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000333.CrossRefGoogle Scholar
  46. Renuka, R., Mariraj Mohan, S., & Amal Raj, S. (2016). Hydrodynamic behaviour and its effects on the treatment performance of panelled anaerobic baffle-cum filter reactor. International journal of Environmental Science and Technology, 13(1), 307–318.  https://doi.org/10.1007/s13762-015-0824-z.CrossRefGoogle Scholar
  47. Robarge, W. P., Edwards, A., & Johnson, B. (1983). Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14(12), 1207–1215.  https://doi.org/10.1080/00103628309367444.CrossRefGoogle Scholar
  48. Rosa, A. P., Conesa, J. A., Fullana, A., Melo, G. C. B., Borges, J. M., & Chernicharo, C. A. L. (2016). Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant. Water Science and Technology, 73(7), 1680–1690.  https://doi.org/10.2166/wst.2015.643.CrossRefGoogle Scholar
  49. Rosa, A. P., Chernicharo, C. A. L., Lobato, L. C. S., Silva, R. V., Padilha, R. F., & Borges, J. M. (2018). Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renewable Energy, 124, 21–26.  https://doi.org/10.1016/J.RENENE.2017.09.025.CrossRefGoogle Scholar
  50. Saliba, P. D., & Von Sperling, M. (2017). Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge. Water Science and Technology, 76(8), 2003–2014.  https://doi.org/10.2166/wst.2017.284.CrossRefGoogle Scholar
  51. Saliling, W. J. B., Westerman, P. W., & Losordo, T. M. (2007). Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquacultural Engineering, 37(3), 222–233.  https://doi.org/10.1016/J.AQUAENG.2007.06.003.CrossRefGoogle Scholar
  52. Sánchez, E., Milán, Z., Borja, R., Weiland, P., & Rodriguez, X. (1995). Piggery waste treatment by anaerobic digestion and nutrient removal by ionic exchange. Resources, Conservation and Recycling, 15(3–4), 235–244.  https://doi.org/10.1016/0921-3449(95)00033-X.CrossRefGoogle Scholar
  53. Shen, Z., Zhou, Y., Hu, J., & Wang, J. (2013). Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. Journal of Hazardous Materials, 250–251, 431–438.  https://doi.org/10.1016/J.JHAZMAT.2013.02.026.CrossRefGoogle Scholar
  54. Show, K.-Y., & Tay, J.-H. (1999). Influence of support media on biomass growth and retention in anaerobic filters. Water Research, 33(6), 1471–1481.  https://doi.org/10.1016/S0043-1354(98)00352-2.CrossRefGoogle Scholar
  55. Silva, J. C. P., Tonetti, A. L., Leonel, L. P., & Costa, A. (2015). Denitrification on upflow-anaerobic filter filled with coconut shells (Cocos nucifera). Ecological Engineering, 82, 474–479.  https://doi.org/10.1016/J.ECOLENG.2015.05.007. https://www.sciencedirect.com/science/article/pii/S0925857415300392?via%3Dihub CrossRefGoogle Scholar
  56. Singh, N. K., Kazmi, A. A., & Starkl, M. (2015). A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Science and Technology, 71(4), 468–478.  https://doi.org/10.2166/wst.2014.413.CrossRefGoogle Scholar
  57. Souza, C. L., Chernicharo, C. A. L., & Aquino, S. F. (2011). Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Science and Technology, 64(11), 2259–2264.  https://doi.org/10.2166/wst.2011.695.CrossRefGoogle Scholar
  58. Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: state of the art, innovative technologies and future perspectives. Science of the Total Environment, 635, 78–91.  https://doi.org/10.1016/J.SCITOTENV.2018.04.071.CrossRefGoogle Scholar
  59. Tchobanoglous, G., & Schroeder, E. E. (1985). Water quality: characteristics, modeling, modification. Reading: Addison-Wesley Pub. Co. https://www.osti.gov/biblio/5887635. Accessed 11 March 2019.Google Scholar
  60. Tchobanoglous, G., Burton, F. L., Stensel, H. D., et. al. (2003). Metcalf & Eddy wastewater engineering: treatment and reuse. International Edition. McGrawHill, 4, 361–411.Google Scholar
  61. Tonetti, A. L., Coraucci Filho, B., Bertoncini, E. I., Oliveira, R. A., & Stefanutti, R. (2010). Avaliação de um sistema simplificado de tratamento de esgotos visando a utilização em áreas rurais. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(2), 227–234.  https://doi.org/10.1590/S1415-43662010000200015.CrossRefGoogle Scholar
  62. Tonetti, A. L., Coraucci Filho, B., Guimarães, J. R., Fadini, P. S., & Nicolau, C. E. (2013). Desnitrificação em um sistema simplificado de tratamento de esgoto. Engenharia Sanitaria e Ambiental, 18(4), 381–392.  https://doi.org/10.1590/S1413-41522013000400010.CrossRefGoogle Scholar
  63. USEPA. (2009). Nutrient control design manual: State of technology review report.Google Scholar
  64. Haandel, A. C. van, & Lettinga, G. (1994). Anaerobic sewage treatment: a practical guide for regions with a hot climate. Anaerobic sewage treatment: a practical guide for regions with a hot climate.Google Scholar
  65. Von Sperling, M., & Chernicharo, C. A. L. (2005). Biological wastewater treatment in warm climate regions. IWA.Google Scholar
  66. Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037.  https://doi.org/10.1016/J.WATRES.2011.11.080.CrossRefGoogle Scholar
  67. Xue, Y., Guo, J., Lian, J., Zhang, Y., Zhang, C., & Zhao, Y. (2016). Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors. Biochemical Engineering Journal, 105, 136–143.  https://doi.org/10.1016/J.BEJ.2015.09.010.CrossRefGoogle Scholar
  68. Zhao, L., Guo, J., Lian, J., Guo, Y., Yue, L., Gou, C., et al. (2015). Study of the dynamics and material transformation characteristics of nitrite denitrification in UASB. Biotechnology & Biotechnological Equipment, 29(5), 907–914.  https://doi.org/10.1080/13102818.2015.1050789.CrossRefGoogle Scholar
  69. Zheng, M. X., Wang, K. J., Zuo, J. E., Yan, Z., Fang, H., & Yu, J. W. (2012). Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates. Bioresource Technology, 107, 33–40.  https://doi.org/10.1016/J.BIORTECH.2011.11.102.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Taína Martins Magalhães
    • 1
  • Natalia Cangussu Duarte
    • 1
  • Thiago de Alencar Neves
    • 1
  • Daniel Augusto Camargo Bueno
    • 1
  • Tiago Palladino Delforno
    • 1
  • Valéria Maia de Oliveira
    • 1
  • Adriano Luiz Tonetti
    • 1
    Email author
  1. 1.School of Civil Engineering, Architecture and Urban DesignUnicamp - University of CampinasCampinasBrazil

Personalised recommendations