Advertisement

Water, Air, & Soil Pollution

, 230:241 | Cite as

Aerosol Optical Characteristics During the Biomass Burning Season in Southeastern Mexico

  • Giovanni CarabalíEmail author
  • Blanca Ríos
  • Lizeth Florean-Cruz
  • Héctor Estévez
  • Mauro Valdés-Barrón
  • Roberto Bonifaz
  • David Riveros-Rosas
Article

Abstract

In this paper, we present a characterization of the optical properties of the aerosols emitted during biomass burning (BB) season in the period 2005–2009. Trends of aerosol optical depth (AOD), Angstrom exponent (α), and precipitable water (PW) were analyzed using a 5-year dataset from AErosol RObotic NETwork (AERONET) observations over Tuxtla Gutierrez (TG), Chiapas. The overall mean AOD (500 nm) during the 2005–2009 period was 0.26 ± 0.18. However, monthly mean values of AOD > 0.5 during the spring months (April and May) would indicate the high load of particles emitted by fires. The overall mean of α (440–870 nm) was 1.40 ± 0.21, which confirms the presence of fine aerosols. Additionally, the combined analysis of the α with its spectral curvature δα, and the results from the spectral de-convolution algorithm (SDA) shows that fine-mode aerosols dominated AOD variability in TG. In this paper, the trajectories of air masses (400 and 1500 m, a.s.l.) arriving at the TG site were classified by using backward trajectory cluster analysis. Trajectory clustering results indicate a BB regional transport from Central America that affects the atmosphere in southeastern Mexico. We use observations of fire radiative power (FRP) from the Moderate Resolution Imaging Spectroradiometer (MODIS) to study the incidence of wildfires and to estimate the BB emissions from 2005 to 2009 in southeastern Mexico. The results indicated a gradual decrease in fires throughout the years. Campeche and Yucatan are the states in southeastern Mexico where BB produces the highest emissions of carbon dioxide (CO2), carbon monoxide (CO), black carbon (BC), and particulate material PM2.5. However, the largest emissions come from wildfires in Guatemala. Finally, to put in context the aerosol optical properties over southeastern Mexico, the sun photometric measurements in TG are compared with those retrieved from AERONET stations located in other tropical biomass burning regions (Brazil and Zambia).

Keywords

Biomass burning Aerosol optical properties Sun photometry MODIS data Fires frequency 

Notes

Acknowledgments

The authors thank B. Holben and the AERONET staff for sun-photometer calibration and support. In addition, we wish to thank Dr. Bradford Barret for reviewing this manuscript and providing editorial and grammatical guidance for the text.

Author Contributions

Conceptualization, G.C. and B.R.; methodology, H.E.; software, B.R.; D.R and G.C.; validation, B.R.; C.F.; D.R and R.B.; formal analysis, G.C and B.R.; investigation, B.R. and G.C resources, M.V.; data curation, C.F. and B.R.; writing—original draft preparation, G.C. and B.R.; writing—review and editing, G.C. and B.R.; project administration, G.C.; funding acquisition, M.V.

Funding Information

This work was supported by the UNAM-DGAPA-PAPIIT grant IA102116 (Mexico) and partial support provided by Instituto de Geofísica (UNAM) internal projects.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11270_2019_4284_MOESM1_ESM.pdf (381 kb)
ESM 1 (PDF 380 kb)

References

  1. Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., & Welton, E. J. (2000). Reduction of tropical cloudiness by soot. Science, 288(5468), 1042 LP–1041047.  https://doi.org/10.1126/science.288.5468.1042.CrossRefGoogle Scholar
  2. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., et al. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072.  https://doi.org/10.5194/acp-11-4039-2011.CrossRefGoogle Scholar
  3. Ångström, A. (1929). On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler, 11, 156–166.  https://doi.org/10.2307/519399.CrossRefGoogle Scholar
  4. Bautista Vicente, F., Carbajal, N., & Pineda Martínez, L. F. (2014). Estimation of total yearly CO2 emissions by wildfires in Mexico during the period 1999–2010. Advances in Meteorology.  https://doi.org/10.1155/2014/958457.CrossRefGoogle Scholar
  5. Becerra, J. X. (2005). Timing the origin and expansion of the Mexican tropical dry forest. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 10919 LP – 10923.  https://doi.org/10.1073/pnas.0409127102.CrossRefGoogle Scholar
  6. Bergstrom, R. W. (1972). Predictions of the spectral absorption and extinction coefficients of an urban air pollution aerosol model. Atmospheric Environment (1967), 6(4), 247–258.  https://doi.org/10.1016/0004-6981(72)90083-2.CrossRefGoogle Scholar
  7. Bergstrom, R. W., Russell, P. B., & Hignett, P. (2002). Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the Aerosol single scattering albedo. Journal of the Atmospheric Sciences, 59(3), 567–577.  https://doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2.CrossRefGoogle Scholar
  8. Burgos, M. A., Mateos, D., Cachorro, V. E., Toledano, C., de Frutos, A. M., Calle, A., et al. (2018). An analysis of high fine aerosol loading episodes in north-Central Spain in the summer 2013—impact of Canadian biomass burning episode and local emissions. Atmospheric Environment, 184, 191–202.  https://doi.org/10.1016/J.ATMOSENV.2018.04.024.CrossRefGoogle Scholar
  9. Carabali, G., Estévez, H. R., Valdés-Barrón, M., Bonifaz-Alfonzo, R., Riveros-Rosas, D., Velasco-Herrera, V. M., & Vázquez-Gálvez, F. A. (2017). Aerosol climatology over the Mexico City basin: Characterization of optical properties. Atmospheric Research, 194, 190–201.  https://doi.org/10.1016/J.ATMOSRES.2017.04.035.CrossRefGoogle Scholar
  10. Challenger, A., & Soberón, J. (2008). Los ecosistemas terrestres. Conocimiento actual de la biodiversidad, 1, 87–108. ISBN: 978-972-36-1339-1.Google Scholar
  11. Comisión Nacional Forestal. (2009). Inventario Nacional Forestal y de Suelos, México 2004-2009. In Memorias de la VII Reunión Nacional de Estadística.  https://doi.org/10.1515/ling.1983.21.1.1.
  12. Csiszar, I., Denis, L., Giglio, L., Justice, C. O., & Hewson, J. (2005). Global fire activity from two years of MODIS data. International Journal of Wildland Fire, 14(2), 117–130.  https://doi.org/10.1071/WF03078.CrossRefGoogle Scholar
  13. Decesari, S., Facchini, M. C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A. R., & Smith, D. M. (2002). Water soluble organic compounds formed by oxidation of soot. Atmospheric Environment, 36(11), 1827–1832.  https://doi.org/10.1016/S1352-2310(02)00141-3.CrossRefGoogle Scholar
  14. Dirmeyer, P. A., & Brubaker, K. L. (2007). Characterization of the global hydrologic cycle from a Back-trajectory analysis of atmospheric water vapor. Journal of Hydrometeorology, 8(1), 20–37.  https://doi.org/10.1175/JHM557.1.CrossRefGoogle Scholar
  15. Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., & Slutsker, I. (2000). Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic network (AERONET) sun and sky radiance measurements. Journal of Geophysical Research-Atmospheres, 105(D8), 9791–9806.  https://doi.org/10.1029/2000JD900040.CrossRefGoogle Scholar
  16. Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., et al. (2002). Variability of absorption and optical properties of key Aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59(3), 590–608.  https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.CrossRefGoogle Scholar
  17. Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. Journal of Geophysical Research-Atmospheres, 105(D16), 20673–20696.  https://doi.org/10.1029/2000JD900282.CrossRefGoogle Scholar
  18. Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., et al. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research-Atmospheres, 104(D24), 31333–31349.  https://doi.org/10.1029/1999JD900923.CrossRefGoogle Scholar
  19. Eck, T. F., Holben, B. N., Reid, J. S., Mukelabai, M. M., Piketh, S. J., Torres, O., et al. (2013). A seasonal trend of single scattering albedo in southern African biomass-burning particles: Implications for satellite products and estimates of emissions for the world’s largest biomass-burning source. Journal of Geophysical Research-Atmospheres, 118(12), 6414–6432.  https://doi.org/10.1002/jgrd.50500.CrossRefGoogle Scholar
  20. Eck, T. F., Holben, B. N., Reid, J. S., O’Neill, N. T., Schafer, J. S., Dubovik, O., et al. (2003). High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophysical Research Letters, 30(20).  https://doi.org/10.1029/2003GL017861.CrossRefGoogle Scholar
  21. Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P., & Ichoku, C. (2008). Relationships between energy release, fuel mass loss, and trace gas an aerosol emissions during laboratory biomass fires. Journal of Geophysical Research-Atmospheres, 113, 1.  https://doi.org/10.1029/2007JD008679.CrossRefGoogle Scholar
  22. Giglio, L., Csiszar, I., & Justice, C. O. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua moderate resolution imaging Spectroradiometer (MODIS) sensors. Journal of Geophysical Research – Biogeosciences, 111, 2.  https://doi.org/10.1029/2005JG000142.CrossRefGoogle Scholar
  23. Gobbi, G. P., Kaufman, Y. J., Koren, I., & Eck, T. F. (2007). Classification of aerosol properties derived from AERONET direct sun data. Atmospheric Chemistry and Physics, 7(2), 453–458.  https://doi.org/10.5194/acp-7-453-2007.CrossRefGoogle Scholar
  24. González Rocha, S. N., Juárez Pérez, F., Aguilar Meléndez, A., Salas, A. C., Calderón Ramón, C., Escalante Martínez, J. E., et al. (2017). Planet boundary layer parameterization in weather research and forecasting (WRFv3.5): Assessment of performance in high spatial resolution simulations in complex topography of Mexico. Computación y Sistemas, 21(1), 35–44.  https://doi.org/10.13053/cys-21-1-2581.CrossRefGoogle Scholar
  25. Hartigan, J. A., & Wong, M. A. (1979). A k-means clustering algorithm. Applied Statistics.  https://doi.org/10.2307/2346830.CrossRefGoogle Scholar
  26. Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., et al. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research-Atmospheres, 106(D11), 12067–12097.  https://doi.org/10.1029/2001JD900014.CrossRefGoogle Scholar
  27. Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., et al. (1998). AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16.  https://doi.org/10.1016/S0034-4257(98)00031-5.CrossRefGoogle Scholar
  28. In, H. J., Byun, D. W., Park, R. J., Moon, N. K., Kim, S., & Zhong, S. (2007). Impact of transboundary transport of carbonaceous aerosols on the regional air quality in the United States: A case study of the south American wildland fire of may 1998. Journal of Geophysical Research-Atmospheres, 112, 7), 1–7),16.  https://doi.org/10.1029/2006JD007544.CrossRefGoogle Scholar
  29. INEGI. (2015). Conjunto de datos vectoriales de la carta de usoUso del suelo y vegetación, escala 1:250000, serie V (continuo nacional). Uso de suelo y vegetación.  https://doi.org/10.1088/1367-2630/9/3/048.CrossRefGoogle Scholar
  30. Kaufman, Y. J. (1993). Aerosol optical thickness and atmospheric path radiance. Journal of Geophysical Research, 98(D2), 2677–2692.  https://doi.org/10.1029/92JD02427.CrossRefGoogle Scholar
  31. Kaufman, Y. J., Justice, C., Flynn, L., Kendall, J., Giglio, L., Ward, D. E., et al. (1998). The heritage for fire remote sensing. Heritage, 103, 32215–32238.Google Scholar
  32. Kim, J., Yoon, S.-C., Jefferson, A., Zahorowski, W., & Kang, C.-H. (2005). Air mass characterization and source region analysis for the Gosan super-site, Korea, during the ACE-Asia 2001 field campaign. Atmospheric Environment, 39(35), 6513–6523.  https://doi.org/10.1016/J.ATMOSENV.2005.07.021.CrossRefGoogle Scholar
  33. Kreidenweis, S. M., Remer, L. A., Bruintjes, R., & Dubovik, O. (2001). Smoke aerosol from biomass burning in Mexico: Hygroscopic smoke optical model. Journal of Geophysical Research-Atmospheres, 106(D5), 4831–4844.  https://doi.org/10.1029/2000JD900488.CrossRefGoogle Scholar
  34. Lee, Y. S., Collins, D. R., Li, R., Bowman, K. P., & Feingold, G. (2006). Expected impact of an aged biomass burning aerosol on cloud condensation nuclei and cloud droplet concentrations. Journal of Geophysical Research-Atmospheres, 111, D22.  https://doi.org/10.1029/2005JD006464.CrossRefGoogle Scholar
  35. Lin, C.-Y., Zhao, C., Liu, X., Lin, N.-H., & Chen, W.-N. (2014). Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus Series B: Chemical and Physical Meteorology, 66(1), 23733.  https://doi.org/10.3402/tellusb.v66.23733.CrossRefGoogle Scholar
  36. Lisok, J., Rozwadowska, A., Pedersen, J. G., Markowicz, K. M., Ritter, C., Kaminski, J. W., et al. (2018). Radiative impact of an extreme Arctic biomass-burning event. Atmospheric Chemistry and Physics, 18(12), 8829–8848.  https://doi.org/10.5194/acp-18-8829-2018.CrossRefGoogle Scholar
  37. Liu, C., Chung, C. E., Zhang, F., & Yin, Y. (2016). The colors of biomass burning aerosols in the atmosphere. Scientific Reports, 6(1), 1–9.  https://doi.org/10.1038/srep28267.CrossRefGoogle Scholar
  38. McCarty, J. L. (2011). Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States. Journal of the Air and Waste Management Association, 61(1), 22–34.  https://doi.org/10.3155/1047-3289.61.1.22.CrossRefGoogle Scholar
  39. Molina, L. T., Kolb, C. E., de Foy, B., Lamb, B. K., Brune, W. H., Jimenez, J. L., et al. (2007). Air quality in North America’s most populous city &ndash; overview of the MCMA-2003 campaign. Atmospheric Chemistry and Physics, 7(10), 2447–2473.  https://doi.org/10.5194/acp-7-2447-2007.CrossRefGoogle Scholar
  40. O’Neill, N. T., Eck, T. F., Holben, B. N., Smirnov, A., Dubovik, O., & Royer, A. (2001). Bimodal size distribution influences on the variation of angstrom derivatives in spectral and optical depth space. Journal of Geophysical Research-Atmospheres, 106(D9), 9787–9806.  https://doi.org/10.1029/2000JD900245.CrossRefGoogle Scholar
  41. Penner, J. E., Dickinson, R. E., & O’Neill, C. A. (1992). Effects of aerosol from biomass burning on the global radiation budget. Science., 256(5062), 1432–1434.  https://doi.org/10.1126/science.256.5062.1432.CrossRefGoogle Scholar
  42. Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., et al. (2001). Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research-Atmospheres.  https://doi.org/10.1029/2001JD900133.CrossRefGoogle Scholar
  43. Reid, J. S., Eck, T. F., Christopher, S. A., Hobbs, P. V., & Holben, B. (1999). Use of the Ångstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil. Journal of Geophysical Research-Atmospheres, 104(D22), 27473–27489.  https://doi.org/10.1029/1999JD900833.CrossRefGoogle Scholar
  44. Ríos, B., & Raga, G. B. (2018). Spatio-temporal distribution of burned areas by ecoregions in Mexico and Central America. International Journal of Remote Sensing, 39(4), 949–970.  https://doi.org/10.1080/01431161.2017.1392641.CrossRefGoogle Scholar
  45. Ritter, C., Angeles Burgos, M., Böckmann, C., Mateos, D., Lisok, J., Markowicz, K. M., et al. (2018). Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015. Tellus Series B: Chemical and Physical Meteorology, 70(1), 1–23.  https://doi.org/10.1080/16000889.2018.1539618.CrossRefGoogle Scholar
  46. Roberts, G., Wooster, M. J., & Lagoudakis, E. (2009). Annual and diurnal african biomass burning temporal dynamics. Biogeosciences, 6(5), 849–866.  https://doi.org/10.5194/bg-6-849-2009.CrossRefGoogle Scholar
  47. Roy, D. P., Jin, Y., Lewis, P. E., & Justice, C. O. (2005). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97(2), 137–162.  https://doi.org/10.1016/j.rse.2005.04.007.CrossRefGoogle Scholar
  48. Salcedo, D., Onasch, T. B., Dzepina, K., Canagaratna, M. R., Zhang, Q., Huffman, J. A., et al. (2006). Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol mass spectrometry: Results from the CENICA supersite. Atmospheric Chemistry and Physics, 6(4), 925–946.  https://doi.org/10.5194/acp-6-925-2006.CrossRefGoogle Scholar
  49. Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., & Slutsker, I. (2000). Cloud-screening and quality control algorithms for the AERONET database. Remote Sensing of Environment, 73(3), 337–349.  https://doi.org/10.1016/S0034-4257(00)00109-7.CrossRefGoogle Scholar
  50. Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). Noaa’s hysplit atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society.  https://doi.org/10.1175/BAMS-D-14-00110.1.CrossRefGoogle Scholar
  51. Toledano, C., Cachorro, V. E., Berjon, A., de Frutos, A. M., Sorribas, M., de la Morena, B. A., & Goloub, P. (2007). Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Quarterly Journal of the Royal Meteorological Society, 133(624), 795–807.  https://doi.org/10.1002/qj.54.CrossRefGoogle Scholar
  52. Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., & Roberts, G. J. (2009). An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal of Geophysical Research-Atmospheres, 114, 18.  https://doi.org/10.1029/2008JD011188.CrossRefGoogle Scholar
  53. Wang, F., Chen, D. S., Cheng, S. Y., Li, J. B., Li, M. J., & Ren, Z. H. (2010). Identification of regional atmospheric PM10 transport pathways using HYSPLIT, MM5-CMAQ and synoptic pressure pattern analysis. Environmental Modelling & Software, 25(8), 927–934.  https://doi.org/10.1016/J.ENVSOFT.2010.02.004.CrossRefGoogle Scholar
  54. Wang, J., van den Heever, S. C., & Reid, J. S. (2009). A conceptual model for the link between central American biomass burning aerosols and severe weather over the south Central United States. Environmental Research Letters, 4(1), 015003.  https://doi.org/10.1088/1748-9326/4/1/015003.CrossRefGoogle Scholar
  55. Ward, D. E., Hao, W. M., Susott, R. A., Babbitt, R. E., Shea, R. W., Kauffman, J. B., & Justice, C. O. (1996). Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. Journal of Geophysical Research-Atmospheres, 101(D19), 23569–23576.  https://doi.org/10.1029/95JD02595.CrossRefGoogle Scholar
  56. Ward, D. E., Susott, R. A., Kauffman, J. B., Babbitt, R. E., Cummings, D. L., Dias, B., et al. (1992). Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment. Journal of Geophysical Research, 97(D13), 14601.  https://doi.org/10.1029/92JD01218.CrossRefGoogle Scholar
  57. Warner, J., & Twomey, S. (1967). The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. Journal of the Atmospheric Sciences.  https://doi.org/10.1175/1520-0469(1967)024<0704:tpocnb>2.0.co;2.
  58. Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research-Atmospheres, 110(24), 1–24.  https://doi.org/10.1029/2005JD006318.CrossRefGoogle Scholar
  59. Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski, S., Atlas, E., et al. (2009). Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 9(15), 5785–5812.  https://doi.org/10.5194/acp-9-5785-2009.CrossRefGoogle Scholar
  60. Yokelson, R. J., Urbanski, S. P., Atlas, E. L., Toohey, D. W., Alvarado, E. C., Crounse, J. D., et al. (2007). Emissions from forest fires near Mexico City. Atmospheric Chemistry and Physics, 7(21), 5569–5584.  https://doi.org/10.5194/acp-7-5569-2007.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Centro de Ciencias de la AtmosferaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations