Advertisement

Bioremediation vs. Nanoremediation: Degradation of Polychlorinated Biphenyls (PCBS) Using Integrated Remediation Approaches

  • Hana HorváthováEmail author
  • Katarína Lászlová
  • Katarína Dercová
Article
  • 33 Downloads

Abstract

Integration of physicochemical and biological approach represented by sequential application of nanoscale zerovalent iron (nZVI dispersion) and bioaugmentation by bacterial strains isolated from the PCB-contaminated site seems to be an innovative way to remove the PCB contamination, which still persists in the environment. First, nanoremediation of the minimal mineral medium artificially contaminated with Delor 103 and of historically contaminated sediment was performed in 70% and 46% PCB removal efficiency. Integrated remediation was carried out as bionanoremediation initiated by addition of bacterial strains and finished by addition of nZVI dispersion Nanofer 25S. Nanobioremediation initiated by nZVI and followed by the addition of bacterial strains A. xylosoxidans, S. maltophilia, and O. anthropi was more effective and led to the increase of PCB degradation to 75%, 85%, and 99%. The bacterial mixed culture (BMC) consisted of 7 bacterial strains with PCB-degrading activity was used for integrated remediation, as well. By the nanobioremediation of the historically contaminated sediment, 78% degradation of PCBs was achieved by combining the nZVI and BMC, with the addition of non-ionic surfactant Triton X-100. The sediment was periodically reinoculated with fresh nZVI dispersion and BMC inoculum. The possible toxic effects of nZVI in concentration used in integrated remediation 2 g l−1 were evaluated on bacterial strains used for integrated remediation. The cell concentrations of the bacterial strains A. xylosoxidans, S. maltophilia, and O. anthropi, expressed as CFU ml−1, decreased in the presence of nZVI by 75%, 52%, and 61%, respectively.

Keywords

Bacteria Bioaugmentation Nanobioremediation Nanoiron PCBs Sediment 

Notes

Acknowledgments

Authors are grateful to NANO IRON, s.r.o. (Czech Republic) for nZVI nanoparticles.

Funding Information

This research was financially supported by the grants Scientific Grant Agency VEGA (1/0295/15) and Slovak Research and Development Agency APVV (0656-12) of the Ministry of Education, Science, Research and Sport of the Slovak Republic.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Bae, S., Collins, R. N., Waite, T. D., & Hanna, K. (2018). Advances in surface passivation of nanoscale zerovalent iron (NZVI): a critical review. Environmental Science and Technology, 52, 12010–12025.CrossRefGoogle Scholar
  2. Bokare, V., Murugesan, K., Kim, J. H., Kim, E. J., & Chang, Y. S. (2010). Degradation of triclosan by an integrated nano-bio redox process. Bioresource Technology, 101, 6354–6360.CrossRefGoogle Scholar
  3. Cecchin, I., Reddy, K. R., Thomé, A., Tessaro, E. F., & Schnaid, F. (2017). Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. International Biodeterioration and Biodegradation, 119, 419–428.CrossRefGoogle Scholar
  4. Colombo, A., Dragonatti, C., Magni, M., & Roberto, D. (2015). Degradation of toxic halogenated organic compounds by iron-containing mono-, bi-, and tri-metallic particles in water. Inorgica Chimica Acta, 431, 48–60.CrossRefGoogle Scholar
  5. Dercová, K., Lászlová, K., Dudášová, H., Murínová, S., Balaščáková, M., & Škarba, J. (2015). The hierarchy in selection of bioremediation techniques: the potentials of utilizing bacterial degraders. Chemické Listy, 109, 279–288 (in Slovak).Google Scholar
  6. Dudášová, H., Lukáčová, L., Murínová, S., Puškárová, A., Pangallo, D., & Dercová, K. (2014). Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. Journal of Basic Microbiology, 54, 253–260.CrossRefGoogle Scholar
  7. Ezzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions. Chemical Engineering Journal, 312, 336–350.CrossRefGoogle Scholar
  8. Fajardo, C., Saccà, M. L., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere, 93, 1077–1083.CrossRefGoogle Scholar
  9. Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194–205.CrossRefGoogle Scholar
  10. Galdames, A., Mendoza, A., Orueta, M., de Soto García, I. S., Sánchez, M., Virto, I., & Vilas, J. L. (2017). Development of new technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resource-Efficient Technologies, 3, 166–176.CrossRefGoogle Scholar
  11. Horváthová, H., Lászlová, K., & Dercová, K. (2018). Bioremediation of PCB-contaminated shallow river sediments: the efficacy of biodegradation using individual bacterial strains and their consortia. Chemosphere, 193, 270–277.CrossRefGoogle Scholar
  12. Horváthová, H., Lászlová, K., & Dercová, K. (2019). The remediation potential of bacterial mixed cultures for the biodegradation of polychlorinated biphenyls (PCBs). Acta Chimica Slovaca, 12, 1–7.CrossRefGoogle Scholar
  13. Keller, A., Garner, K., Miller, R., & Leniham, H. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One, 7, e43983.CrossRefGoogle Scholar
  14. Kirschling, T. L., Gregory, K. B., Minkley, J., Edwin, G., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science and Technology, 44, 3474–3480.CrossRefGoogle Scholar
  15. Kotchaplai, P., Khan, E., & Vangnai, A. S. (2017). Membrane alterations in Pseudomonas putida F1 exposed to nanoscale zerovalent iron: effects of short-term and repetitive nZVI exposure. Environmental Science and Technology, 51, 7804–7813.CrossRefGoogle Scholar
  16. Lászlová, K., Dercová, K., Horváthová, H., Murínová, S., Škarba, J., & Dudášová, H. (2016). Assisted bioremediation approaches – biostimulation and bioaugmentation – used in the removal of organochlorinated pollutants from the contaminated bottom sediments. International Journal of Environmental Research, 10, 367–378.Google Scholar
  17. Lászlová, K., Dudášová, H., Olejníková, P., Horváthová, G., Velická, Z., Horváthová, H., & Dercová, K. (2018). The application of biosurfactants in bioremediation of the aged sediment contaminated with polychlorinated biphenyls. Water, Air, and Soil Pollution, 229, 219–235.CrossRefGoogle Scholar
  18. Le, T. T., Nguyen, K. H., Jeon, J. R., Francis, A. J., & Chang, Y. S. (2015). Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. Journal of Hazardous Materials, 287, 335–341.CrossRefGoogle Scholar
  19. Lefevre, E., Bossa, N., Wiesner, M. R., & Gunsch, C. K. (2016). A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Science of the Total Environment, 565, 889–901.CrossRefGoogle Scholar
  20. Li, Z., Greden, K., Alvarez, P. J., Gregory, G. V., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science and Technology, 44, 3462–3467.CrossRefGoogle Scholar
  21. Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on nZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science and Technology, 40, 6085–6090.CrossRefGoogle Scholar
  22. Mills, S. A., Thal, D. I., & Barney, J. (2007). A summary of the 209 PCB congener nomenclature. Chemosphere, 68, 1603–1612.CrossRefGoogle Scholar
  23. Murínová, S., & Dercová, K. (2014). Potential use of newly isolated bacterial strain Ochrobactrum anthropi in bioremediation of polychlorinated biphenyls. Water, Air, and Soil Pollution, 225, 1980.CrossRefGoogle Scholar
  24. Rónavári, A., Balázs, M., Tolmacsov, P., Molnár, C., Kiss, I., Kukovec, Á., & Kónya, Z. (2016). Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Research, 95, 165–173.CrossRefGoogle Scholar
  25. Stefaniuk, M., Oleszczuk, P., & Ok, S. O. (2016). Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chemical Engineering Journal, 287, 618–632.CrossRefGoogle Scholar
  26. Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X., & Wang, H. P. (2006). Characterization of nano zero valent iron nanoparticles. Advance in Colloid and Interface Science, 120, 47–56.CrossRefGoogle Scholar
  27. Taniyasu, S., Kannan, K., Holoubek, I., Ansorgova, A., Horii, Y., Hanari, N., Yamashita, N., & Aldous, K. M. (2003). Isomer-specific analysis of chlorinated biphenyls, naphthalenes and dibenzofurans in Delor: polychlorinated biphenyl preparations from the former Czechoslovakia. Environmental Pollution, 126, 169–178.CrossRefGoogle Scholar
  28. Wang, S., Zhao, M., Zhou, M., Li, Y. C., Wang, J., Gao, B., Sato, S., Feng, K., Yin, W., Igalvithana, A. D., Oleszczuk, P., Wang, X., & Ok, Y. S. (2019). Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review. Journal of Hazardous Materials, 373, 820–834.CrossRefGoogle Scholar
  29. Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., Deng, J., Zhang, L., & Zhang, Y. (2017). The interactions between nanoscale zero-valent iron and microbes in the subsurface environment. Journal of Hazardous Materials, 321, 390–407.CrossRefGoogle Scholar
  30. Zabetakis, K. M., Niño de Guzmán, G. T., Torrents, A., & Yarwood, S. (2015). Toxicity of zero-valent iron nanoparticles to a trichlorethylene-degrading groundwater microbial community. Journal of Environmental Science and Health, Part A, 50, 794–805.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biotechnology, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations