Advertisement

Removal of Crystal Violet from Natural Water and Effluents Through Biosorption on Bacterial Biomass Isolated from Rhizospheric Soil

  • Brenda V. Canizo
  • Elizabeth Agostini
  • Ana L. Wevar Oller
  • Guilherme L. Dotto
  • Israel A. Vega
  • Leticia B. EscuderoEmail author
Article

Abstract

It was investigated the potential of Rhodococcus erythropolis AW3 as a biosorbent for the removal of crystal violet (CV) dye from natural water and real effluents. The biosorbent was characterized by flow cytometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy X-ray dispersive spectroscopy (EDS), and point of zero charge (pHZPC). Batch biosorption experiments were performed to optimize different parameters involved in the biosorption process. The equilibrium was reached at 90 min at the optimum biosorbent dose of 0.50 g L−1 and pH of 9.0. Results indicated that Langmuir isotherm model was the most suitable to represent the experimental data, and the highest biosorption capacity was 289.8 mg g−1. Kinetic data were well fitted with the pseudo-second-order model. The thermodynamic study showed that the process was favorable, exothermic, and associated with an increase of entropy. Finally, it was demonstrated that the biosorption process using Rhodococcus erythropolis AW3 could be successfully applied to remove CV from natural water and effluents derived from clinical and industrial activities.

Keywords

Crystal violet Rhodococcus erythropolis AW3 Biosorption Removal Natural water Industrial effluents 

Notes

Funding Information

The authors would like to acknowledge the financial support of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT) (PICT–BID), and Universidad Nacional de Cuyo (Argentina).

Supplementary material

11270_2019_4235_MOESM1_ESM.docx (27 kb)
ESM_1 Kinetic and equilibrium models equations (DOCX 26 kb)
11270_2019_4235_MOESM2_ESM.docx (22 kb)
ESM_2 Thermodynamic parameters (DOCX 21 kb)
11270_2019_4235_MOESM3_ESM.docx (17 kb)
ESM_3 Coefficient of determination (R2) and average relative error (ARE) equations (DOCX 17 kb)

References

  1. Adegoke, K. A., & Bello, O. S. (2015). Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 12, 8–24.  https://doi.org/10.1016/j.wri.2015.09.002.CrossRefGoogle Scholar
  2. Aquino, E., Barbieri, C., & Oller Nascimento, C. A. (2011). Engineering Bacteria for Bioremediation. In A. Carpi (Ed.), Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications (pp. 605–632). InTech.  https://doi.org/10.5772/19546.Google Scholar
  3. Ayati, A., Shahrak, M. N., Tanhaei, B., & Sillanpää, M. (2016). Emerging adsorptive removal of azo dye by metal–organic frameworks. Chemosphere, 160, 30–44.  https://doi.org/10.1016/j.chemosphere.2016.06.065.CrossRefGoogle Scholar
  4. Baltazar, M. dos P. G., Gracioso, L. H., Avanzi, I. R., Karolski, B., Tenório, J. A. S., do Nascimento, C. A. O., & Perpetuo, E. A. (2019). Copper biosorption by Rhodococcus erythropolis isolated from the Sossego Mine – PA – Brazil. Journal of Materials Research and Technology, 8(1), 475–483.  https://doi.org/10.1016/j.jmrt.2018.04.006.CrossRefGoogle Scholar
  5. Brown, S., Santa Maria, J. P., & Walker, S. (2013). Wall teichoic acids of gram-positive bacteria. Annual Review of Microbiology, 67(1), 313–336.  https://doi.org/10.1146/annurev-micro-092412-155620.CrossRefGoogle Scholar
  6. Bueno, B. Y. M., Torem, M. L., Molina, F., & de Mesquita, L. M. S. (2008). Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: Equilibrium and kinetic studies. Minerals Engineering, 21, 65–75.  https://doi.org/10.1016/j.mineng.2007.08.013.CrossRefGoogle Scholar
  7. Cheriaa, J., Khaireddine, M., Rouabhia, M., & Bakhrouf, A. (2012). Removal of triphenylmethane dyes by bacterial consortium. The Scientific World Journal, 2012(May 2014), 1–9.  https://doi.org/10.1100/2012/512454.CrossRefGoogle Scholar
  8. Chowdhury, S., Chakraborty, S., & Saha, P. D. (2013). Adsorption of crystal violet from aqueous solution by citric acid modified rice straw: Equilibrium, kinetics, and thermodynamics. Separation Science and Technology, 48(9), 1339–1348.  https://doi.org/10.1080/01496395.2012.729122.CrossRefGoogle Scholar
  9. Crini, G., & Badot, P.-M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33(4), 399–447.  https://doi.org/10.1016/j.progpolymsci.2007.11.001.CrossRefGoogle Scholar
  10. Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M. A., Lassota, P., & Traganos, F. (1992). Features of apoptotic cells measured by flow cytometry. Cytometry, 13(8), 795–808.  https://doi.org/10.1002/cyto.990130802.CrossRefGoogle Scholar
  11. Doke, K. M., Yusufi, M., Joseph, R. D., & Khan, E. M. (2016). Comparative adsorption of crystal violet and Congo red onto ZnCl 2 activated carbon. Journal of Dispersion Science and Technology, 37(11), 1671–1681.  https://doi.org/10.1080/01932691.2015.1124342.CrossRefGoogle Scholar
  12. Escudero, L. B., Smichowski, P. N., & Dotto, G. L. (2017). Macroalgae of Iridaea cordata as an efficient biosorbent to remove hazardous cationic dyes from aqueous solutions. Water Science and Technology, 76(12), 3379–3391.  https://doi.org/10.2166/wst.2017.505.CrossRefGoogle Scholar
  13. Escudero, L. B., Quintas, P. Y., Wuilloud, R. G., & Dotto, G. L. (2019). Recent advances on elemental biosorption. Environmental Chemistry Letters, 17(1), 409–427.  https://doi.org/10.1007/s1031101808166.
  14. Filho, A. C. D., Mazzocato, A. C., Dotto, G. L., Thue, P. S., & Pavan, F. A. (2017). Eragrostis plana Nees as a novel eco-friendly adsorbent for removal of crystal violet from aqueous solutions. Environmental Science and Pollution Research, 24(24), 19909–19919.  https://doi.org/10.1007/s11356-017-9365-y.CrossRefGoogle Scholar
  15. Jayasantha Kumari, H., Krishnamoorthy, P., Arumugam, T. K., Radhakrishnan, S., & Vasudevan, D. (2017). An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/chitosan composite: A novel low cost adsorbent. International Journal of Biological Macromolecules, 96, 324–333.  https://doi.org/10.1016/j.ijbiomac.2016.11.077.CrossRefGoogle Scholar
  16. Jin, X. C., Liu, G. Q., Xu, Z. H., & Tao, W. Y. (2007). Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Applied Microbiology and Biotechnology, 74(1), 239–243.  https://doi.org/10.1007/s00253-006-0658-1.CrossRefGoogle Scholar
  17. Kaur, S., Rani, S., & Mahajan, R. K. (2015). Adsorption of dye crystal violet onto surface-modified Eichhornia crassipes. Desalination and Water Treatment, 53(7), 1957–1969.  https://doi.org/10.1080/19443994.2013.859104.CrossRefGoogle Scholar
  18. Khan, M. M. R., Rahman, M. W., Ong, H. R., Ismail, A. B., & Cheng, C. K. (2016). Tea dust as a potential low-cost adsorbent for the removal of crystal violet from aqueous solution. Desalination and Water Treatment, 57(31), 14728–14738.  https://doi.org/10.1080/19443994.2015.1066272.CrossRefGoogle Scholar
  19. Kulkarni, M. R., Revanth, T., Acharya, A., & Bhat, P. (2017). Removal of crystal violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resource-Efficient Technologies, 3(1), 71–77.  https://doi.org/10.1016/j.reffit.2017.01.009.CrossRefGoogle Scholar
  20. Lim, L. B. L., Priyantha, N., Zehra, T., Then, C. W., & Chan, C. M. (2016). Adsorption of crystal violet dye from aqueous solution onto chemically treated Artocarpus odoratissimus skin: Equilibrium, thermodynamics, and kinetics studies. Desalination and Water Treatment, 57(22), 10246–10260.  https://doi.org/10.1080/19443994.2015.1033474.CrossRefGoogle Scholar
  21. Liu, C., & Liu, H. (2011). Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors. Process Biochemistry, 46(1), 202–209.  https://doi.org/10.1016/j.procbio.2010.08.008.CrossRefGoogle Scholar
  22. Liu, C., Liang, M., Chen, Y., Sayavedra-soto, L. A., & Liu, H. (2012). Biodegradation of n-alkanes at high concentration and correlation to the accumulation of H+ ions in Rhodococcus erythropolis NTU-1. Biochemical Engineering Journal, 63(1), 124–128.  https://doi.org/10.1016/j.bej.2011.11.007.CrossRefGoogle Scholar
  23. Liu, S., Zeng, G., Niu, Q., Liu, Y., Zhou, L., Jiang, L., et al. (2017). Bioresource technology bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33.  https://doi.org/10.1016/j.biortech.2016.11.095.CrossRefGoogle Scholar
  24. Maas, R., & Chaudhari, S. (2005). Adsorption and biological decolourization of azo dye reactive red 2 in semicontinuous anaerobic reactors. Process Biochemistry, 40(2), 699–705.  https://doi.org/10.1016/j.procbio.2004.01.038.CrossRefGoogle Scholar
  25. Malhautier, L., Quijano, G., Avezac, M., Rocher, J., & Fanlo, J. L. (2014). Kinetic characterization of toluene biodegradation by Rhodococcus erythropolis: Towards a rationale for microflora enhancement in bioreactors devoted to air treatment. Chemical Engineering Journal, 247, 199–204.  https://doi.org/10.1016/j.cej.2014.02.099.CrossRefGoogle Scholar
  26. Miyah, Y., Lahrichi, A., Idrissi, M., Boujraf, S., Taouda, H., & Zerrouq, F. (2017). Assessment of adsorption kinetics for removal potential of crystal violet dye from aqueous solutions using Moroccan pyrophyllite. Journal of the Association of Arab Universities for Basic and Applied Sciences, 23(1), 20–28.  https://doi.org/10.1016/j.jaubas.2016.06.001.CrossRefGoogle Scholar
  27. Mohan, N., Balasubramanian, N., & Ahmed Basha, C. (2007). Electrochemical oxidation of textile wastewater and its reuse. Journal of Hazardous Materials, 147(1–2), 644–651.  https://doi.org/10.1016/j.jhazmat.2007.01.063.CrossRefGoogle Scholar
  28. Neupane, S., Ramesh, S. T., Gandhimathi, R., & Nidheesh, P. V. (2015). Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution. Desalination and Water Treatment, 54(7), 2041–2054.  https://doi.org/10.1080/19443994.2014.903867.CrossRefGoogle Scholar
  29. Puri, C., & Sumana, G. (2018). Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Applied Clay Science, 166(April), 102–112.  https://doi.org/10.1016/j.clay.2018.09.012.CrossRefGoogle Scholar
  30. Ramírez-García, R., Gohil, N., & Singh, V. (2019). Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of Polluted Sites (1st Edition., pp. 517–568). Elsevier.  https://doi.org/10.1016/B978-0-12-813912-7.00021-1.CrossRefGoogle Scholar
  31. Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-García, M. A., & Moreno-Castilla, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology & Biotechnology, 76(12), 1209–1215.  https://doi.org/10.1002/jctb.506.CrossRefGoogle Scholar
  32. Roy, D. C., Biswas, S. K., Saha, A. K., Sikdar, B., Rahman, M., Roy, A. K., et al. (2018). Biodegradation of crystal violet dye by bacteria isolated from textile industry effluents. PeerJ, 6, e5015.  https://doi.org/10.7717/peerj.5015.CrossRefGoogle Scholar
  33. Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390–397.  https://doi.org/10.1016/j.ecoenv.2015.09.018.CrossRefGoogle Scholar
  34. Suyamboo, B. K., & Srikrishnaperumal, R. (2014). Biosorption of crystal violet onto cyperus rotundus in batch system: Kinetic and equilibrium modeling. Desalination and Water Treatment, 52(19–21), 3535–3546.  https://doi.org/10.1080/19443994.2013.803315.CrossRefGoogle Scholar
  35. Vijayaraghavan, K., & Yun, Y. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291.  https://doi.org/10.1016/j.biotechadv.2008.02.002.CrossRefGoogle Scholar
  36. Wang, X. S., Liu, X., Wen, L., Zhou, Y., Jiang, Y., & Li, Z. (2008). Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents. Separation Science and Technology, 43(14), 3712–3731.  https://doi.org/10.1080/01496390802222640.CrossRefGoogle Scholar
  37. Wang, L., Li, Q., & Wang, A. (2010). Adsorption of cationic dye on N,O-carboxymethyl-chitosan from aqueous solutions: equilibrium, kinetics, and adsorption mechanism. Polymer Bulletin, 65(9), 961–975.  https://doi.org/10.1007/s00289-010-0363-1.CrossRefGoogle Scholar
  38. Wevar Oller, A. L., Talano, M. A., & Agostini, E. (2013). Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from the rhizosphere of soybean plants from Argentinean agricultural soil. Plant and Soil, 369(1–2), 93–102.  https://doi.org/10.1007/s11104-012-1543-6.CrossRefGoogle Scholar
  39. Yang, H., Tang, Q., Wang, C., & Zhang, J. (2013). Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Minerals Engineering, 45, 67–72.  https://doi.org/10.1016/j.mineng.2013.01.005.CrossRefGoogle Scholar
  40. Zehra, T., Priyantha, N., & Lim, L. B. L. (2016). Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: Thermodynamics, kinetics, and equilibrium studies. Environmental Earth Sciences, 75(4), 357.  https://doi.org/10.1007/s12665-016-5255-8.CrossRefGoogle Scholar
  41. Zhang, L., Zhang, H., Guo, W., & Tian, Y. (2014). Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud. Applied Clay Science, 93–94, 85–93.  https://doi.org/10.1016/j.clay.2014.03.004.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brenda V. Canizo
    • 1
  • Elizabeth Agostini
    • 2
  • Ana L. Wevar Oller
    • 2
  • Guilherme L. Dotto
    • 3
  • Israel A. Vega
    • 4
  • Leticia B. Escudero
    • 1
    Email author
  1. 1.Laboratory of Analytical Chemistry for Research and Development (QUIANID), Interdisciplinary Institute of Basic Sciences (ICB), UNCUYO–CONICET, Faculty of Natural and Exact SciencesNational University of CuyoMendozaArgentina
  2. 2.Departamento de Biología Molecular, FCEFQyNUniversidad Nacional de Río Cuarto–CONICETCórdobaArgentina
  3. 3.Chemical Engineering DepartmentFederal University of Santa Maria−UFSMSanta MariaBrazil
  4. 4.IHEMUniversidad Nacional de Cuyo, CONICETMendozaArgentina

Personalised recommendations