Advertisement

Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action

  • Valentina Tolardo
  • Sara García-Ballesteros
  • Lucas Santos-Juanes
  • Rosa Vercher
  • Ana M. Amat
  • Antonio Arques
  • Enzo LaurentiEmail author
Article

Abstract

Soybean peroxidase (SBP) has been employed for the treatment of aqueous solutions containing pentachlorophenol (PCP) in the presence of hydrogen peroxide at pH range 5–7. Reaction carried out with 1 mg/L of PCP, 4 mg/L of H2O2, and 1.3 × 10−9 M of SBP showed a fast initial elimination of PCP (ca. 30% in 20 min), but the reaction does not go beyond the removal of 50% of the initial concentration of PCP. Modification in SBP and PCP amounts did not change the reaction profile and higher amounts of H2O2 were detrimental for the reaction. Addition of Fe(II) to the system resulted in an acceleration of the process to reach nearly complete PCP removal at pH 5 or 6; this is more probably due to a synergetic effect of the enzymatic process and Fenton reaction. However, experiments developed in tap water resulted in a lower PCP elimination, but this inconvenience can be partly overcome by leaving the tap water overnight in an open vessel before reaction.

Keywords

Soybean peroxidase Fenton Pentachlorophenol Hydrogen peroxide Wastewater Iron 

Notes

Acknowledgments

We want to acknowledge Davide Mainero from Acea Pinerolese for his collaboration in this research.

Funding Information

The authors want to thank the financial support of the European Union (PIRSES-GA-2010-269128, EnvironBOS and Marie Sklodowska-Curie Research and Innovation Staff Exchange project H2020-MSCA-RISE-2014, Mat4treaT - project number: 645551) and Spanish Ministerio de Educación y Ciencia (CTQ2015-69832-C4-4-R). Sara García-Ballesteros would like to thank the Spanish Ministerio de Economía y Competitividad for her fellowship (BES-2013-066201).

References

  1. Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572.  https://doi.org/10.1016/j.jece.2013.10.011.CrossRefGoogle Scholar
  2. Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere, 52(2), 313–324.  https://doi.org/10.1016/S0045-6535(03)00211-X.CrossRefGoogle Scholar
  3. Calza, P., Zacchigna, D., & Laurenti, E. (2016). Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 23(23), 23742–23749.  https://doi.org/10.1007/s11356-016-7399-1.CrossRefGoogle Scholar
  4. Caza, N., Bewtra, J., Biswas, N., & Taylor, K. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 33(13), 3012–3018.  https://doi.org/10.1016/S0043-1354(98)00525-9.CrossRefGoogle Scholar
  5. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322(1–3), 21–39.  https://doi.org/10.1016/j.scitotenv.2003.09.015.CrossRefGoogle Scholar
  6. Donadelli, J. A., Carlos, L., Arques, A., & García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61.  https://doi.org/10.1016/j.apcatb.2018.02.057.CrossRefGoogle Scholar
  7. Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28(2), 83–99.  https://doi.org/10.1016/S0926-3373(00)00168-5.CrossRefGoogle Scholar
  8. Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B., & Guieysse, B. (2007). Sequential photochemical–biological degradation of chlorophenols. Chemosphere, 66(11), 2201–2209.  https://doi.org/10.1016/j.chemosphere.2006.08.036.CrossRefGoogle Scholar
  9. Garcia-Peña, E. I., Zarate-Segura, P., Guerra-Blanco, P., Poznyak, T., & Chairez, I. (2012). Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation. Water, Air, and Soil Pollution, 223(7), 4047–4064.  https://doi.org/10.1007/s11270-012-1172-y.CrossRefGoogle Scholar
  10. Hoekstra, E. J., De Weerd, H., De Leer, E. W. B., & Brinkman, U. A. T. (1999). Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environmental Science and Technology, 33(15), 2543–2549.  https://doi.org/10.1021/es9900104.CrossRefGoogle Scholar
  11. Karci, A. (2014). Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere, 99, 1–18.  https://doi.org/10.1016/j.chemosphere.2013.10.034.CrossRefGoogle Scholar
  12. Li, Z. (2018). Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. Journal of Environmental Management, 205, 163–173.  https://doi.org/10.1016/j.jenvman.2017.09.070.CrossRefGoogle Scholar
  13. Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327.  https://doi.org/10.1016/j.jinorgbio.2010.11.009.CrossRefGoogle Scholar
  14. Marchis, T., Cerrato, G., Magnacca, G., Crocellà, V., & Laurenti, E. (2012). Immobilization of soybean peroxidase on aminopropyl glass beads: structural and kinetic studies. Biochemical Engineering Journal, 67, 28–34.  https://doi.org/10.1016/j.bej.2012.05.002.CrossRefGoogle Scholar
  15. Muñoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2013). Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/?-Al2O3 catalyst. Water Research, 47(9), 3070–3080.  https://doi.org/10.1016/j.watres.2013.03.024.CrossRefGoogle Scholar
  16. Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution. Elsevier.  https://doi.org/10.1016/j.envpol.2017.11.060.CrossRefGoogle Scholar
  17. Ngo, T. T., & Lenhoff, H. M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105(1), 389–397.  https://doi.org/10.1016/0003-2697(80)90475-3.CrossRefGoogle Scholar
  18. Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297–1306.  https://doi.org/10.1016/j.chemosphere.2011.04.009.CrossRefGoogle Scholar
  19. Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141–4166.  https://doi.org/10.1016/j.scitotenv.2010.08.061.CrossRefGoogle Scholar
  20. Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005, July 22). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports. Springer-Verlag.  https://doi.org/10.1007/s00299-005-0972-6.CrossRefGoogle Scholar
  21. Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256.  https://doi.org/10.1016/j.apcatb.2003.09.010.CrossRefGoogle Scholar
  22. Qayyum, H., Maroof, H., & Yasha, K. (2009). Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 29(2), 94–119.  https://doi.org/10.1080/07388550802685306.CrossRefGoogle Scholar
  23. Samokyszyn, V. M., Freeman, J. P., Rao Maddipati, K., & Lloyd, R. V. (1995). Peroxidase-catalyzed oxidation of pentachlorophenol. Chemical Research in Toxicology, 8, 349–355 http://pubs.acs.org/doi/pdf/10.1021/tx00045a005. Accessed 23 June 2017CrossRefGoogle Scholar
  24. Santos-Juanes, L., Amat, A. M., & Arques, A. (2017a). Strategies to drive photo-Fenton process at mild conditions for the removal of xenobiotics from aqueous systems. Current Organic Chemistry, 21(12), 1074–1083.  https://doi.org/10.1136/adc.2010.199901.CrossRefGoogle Scholar
  25. Santos-Juanes, L., García Einschlag, F. S., Amat, A. M., & Arques, A. (2017b). Combining ZVI reduction with photo-Fenton process for the removal of persistent pollutants. Chemical Engineering Journal, 310, 484–490.  https://doi.org/10.1016/j.cej.2016.04.114.CrossRefGoogle Scholar
  26. Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315.  https://doi.org/10.1016/S0920-5861(02)00228-6.CrossRefGoogle Scholar
  27. Sharma, S., Mukhopadhyay, M., & Murthy, Z. V. P. (2013). Treatment of chlorophenols from wastewaters by advanced oxidation processes. Separation & Purification Reviews, 42(May 2015), 37–41.  https://doi.org/10.1080/15422119.2012.669804.CrossRefGoogle Scholar
  28. Soler, J., García-Ripoll, A., Hayek, N., Miró, P., Vicente, R., Arques, A., & Amat, A. M. (2009). Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Research, 43(18), 4441–4450.  https://doi.org/10.1016/j.watres.2009.07.011.CrossRefGoogle Scholar
  29. Steevensz, A., Cordova Villegas, L. G., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014). Soybean peroxidase for industrial wastewater treatment: a mini review. Journal of Environmental Engineering and Science, 9(3), 181–186.  https://doi.org/10.1680/jees.13.00013.CrossRefGoogle Scholar
  30. Sun, Z., Wei, X., Zhang, H., & Hu, X. (2015). Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film. Environmental Science and Pollution Research, 22(5), 3828–3837.  https://doi.org/10.1007/s11356-014-3641-x.CrossRefGoogle Scholar
  31. Tsai, W.-T. (2013). A review on environmental distributions and risk management of phenols pertaining to the endocrine disrupting chemicals in Taiwan. Toxicological & Environmental Chemistry, 95(5), 723–736.  https://doi.org/10.1080/02772248.2013.818150.CrossRefGoogle Scholar
  32. Valderrama, B., Ayala, M., & Vazquez-Duhalt, R. (2002, May 1). Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry and Biology. Cell Press.  https://doi.org/10.1016/S1074-5521(02)00149-7.CrossRefGoogle Scholar
  33. Verbrugge, L. A., Kahn, L., & Morton, J. M. (2018). Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. Environmental Science and Pollution Research, 25(19), 19187–19195.  https://doi.org/10.1007/s11356-018-2269-7.CrossRefGoogle Scholar
  34. Wright, H., & Nicell, J. A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 70(1), 69–79.  https://doi.org/10.1016/S0960-8524(99)00007-3.CrossRefGoogle Scholar
  35. Zhang, G., & Nicell, J. A. (2000). Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 34(5), 1629–1637.  https://doi.org/10.1016/S0043-1354(99)00326-7.CrossRefGoogle Scholar
  36. Zhang, J., Ye, P., Chen, S., & Wang, W. (2007). Removal of pentachlorophenol by immobilized horseradish peroxidase. International Biodeterioration & Biodegradation, 59, 307–314.  https://doi.org/10.1016/j.ibiod.2006.09.003.CrossRefGoogle Scholar
  37. Zheng, W., Yu, H., Wang, X., & Qu, W. (2012, July 1). Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environment International. Pergamon.  https://doi.org/10.1016/j.envint.2011.04.014.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversità di TorinoTorinoItaly
  2. 2.Smart MaterialsIstituto Italiano di TecnologiaGenoaItaly
  3. 3.Grupo Procesos de Oxidación Avanzada, Campus de AlcoyUniversitat Politècnica de ValènciaAlcoySpain

Personalised recommendations