Advertisement

Degradation of Textile Dyes Employing Advanced Oxidative Processes: Kinetic, Equilibrium Modeling, and Toxicity Study of Seeds and Bacteria

  • Rayany Magali da Rocha Santana
  • Lívia Carlini Vieira Charamba
  • Graziele Elisandra do Nascimento
  • Julierme Gomes Correia de Oliveira
  • Deivson Cesar Silva Sales
  • Marta Maria Menezes Bezerra Duarte
  • Daniella Carla NapoleãoEmail author
Article
  • 100 Downloads

Abstract

The textile industries’ production of effluents with a high content of organic matter and coloration is notorious, particularly as regards their effect on the aquatic environment. This occurs in the presence of dyes that inhibit light penetration, thus affecting the biodegradability of the medium. This study evaluates the advanced oxidative processes (AOP) for use in the degradation of the reactive red 195 and direct black 22 textile dyes using bench reactors. The photo-Fenton/sunlight process was efficient, achieving a degradation of over 99% for the chromophore groups after 150 min when utilizing [H2O2] = 60 mg L−1, [Fe] = 1 mg L−1, and a pH of between 3 and 4. The kinetic model into which the experimental data best fitted was the non-linear model which employs wavelength monitoring. The COD study indicated an organic matter conversion rate of 94.96%, with a good kinetic adjustment (R2= 0.9927. A mathematical model was proposed to estimate the degradation (%) according to the variables [H2O2], [Fe], pH, and λ. In addition, the present study evaluated the toxicity of the solution, both before and after the treatment, and was verified that the treated solution was toxic by using a concentration of 10% of Lactuca sativa and Syzygium aromaticum seeds. The toxicity analysis using microbiological techniques showed that, after the treatment, the percentage of inhibition was reduced considerably, dropping to 46.0% for the sample without dilution and inhibiting only 33.4% for SPT1%.

Keywords

Chemical oxygen demand Direct black 22 Mathematical model Photo-Fenton Reactive red 195 Sunlight radiation 

Notes

Acknowledgments

The authors thank Núcleo de Química Analítica Avançada de Pernambuco da Fundação de Amparo a Ciência e Tecnologia de Pernambuco (NUQAAPE/FACEPE), Fundação de Apoio ao Desenvolvimento (FADE/UFPE), and Laboratório de Bioquímica de Proteínas da Universidade Federal de Pernambuco.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, DC: American Public Health Association (APHA), American Water Works Association, and Water and Environment Federation.Google Scholar
  2. Araújo, K. S., Antonelli, R., Gaydeczka, B., Granato, A. C., & Malpass, G. R. P. (2016). Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente e Água, 11, 387–401.CrossRefGoogle Scholar
  3. Baeissa, E. S. (2016). Photocatalytic degradation of malachite green dye using Au/NaNbO3 nanoparticles. Journal of Alloys and Compounds, 672, 564–570.  https://doi.org/10.1016/j.jallcom.2016.02.024.CrossRefGoogle Scholar
  4. Bonakdarpour, B., Vyrides, I., & Stuckey, D. C. (2011). Comparison of the performance of one stage and two stage sequential anaerobic–aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters. International Biodeterioration & Biodegradation, 65, 591–599.  https://doi.org/10.1016/j.ibiod.2011.03.002.CrossRefGoogle Scholar
  5. Brito, N. N. D., & Silva, V. B. M. (2012). Processos oxidativos avançados e sua aplicação ambiental. Revista Eletrônica de Engenharia Civil, 1, 36–47.  https://doi.org/10.5216/reec.v3i1.17000.CrossRefGoogle Scholar
  6. Cai, M., Su, J., Zhu, Y., Wei, X., Jin, M., Zhang, H., Dong, C., & Wei, Z. (2016). Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process. Ultrasonics Sonochemistry, 28, 302–310.  https://doi.org/10.1016/j.ultsonch.2015.08.001.CrossRefGoogle Scholar
  7. Chan, K. H., & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51, 305–311.  https://doi.org/10.1016/S0045-6535(02)00812-3.CrossRefGoogle Scholar
  8. Chen, X., Zhao, Y., Moutinho, J., Shao, J., Zydney, A. L., & He, Y. (2015). Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes. Journal of Hazardous Materials, 284, 58–64.  https://doi.org/10.1016/j.jhazmat.2014.10.031.CrossRefGoogle Scholar
  9. Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of Environmental Management, 195(1), 93–99.CrossRefGoogle Scholar
  10. Elaissaoui, I., Akrout, H., Grassini, S., Fulginiti, D. & Bousselmi, L. (2019). Effect of coating method on the structure and properties of a novel PbO2 anode for electrochemical oxidation of Amaranth dye. Chemosphere, 217, 26-34.  https://doi.org/10.1016/j.chemosphere.2018.10.161.CrossRefGoogle Scholar
  11. Elhalil, H., Tounsadi, R. E., Mahjoubi, F. Z., Farnane, M., Sadiq, M., Abdennouri, M., Qourzal, S., & Barka, N. (2016). Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process. Water Resources and Industry, 15, 41–48.  https://doi.org/10.1016/j.wri.2016.07.002.CrossRefGoogle Scholar
  12. Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study. Arabian Journal of Chemistry, (10), 1158–1163.  https://doi.org/10.1016/j.arabjc.2013.02.009.CrossRefGoogle Scholar
  13. Fernandes, N. C., Brito, L. B., Costa, G. G., Taveira, S. F., Cunha–Filho, M. S. S., Oliveira, G. A. R. & Marreto, R. N. (2018). Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests. Chemico-biological interactions, 291, 47-54.  https://doi.org/10.1016/j.cbi.2018.06.003.CrossRefGoogle Scholar
  14. Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO). (2011). DOQ-CGCRE-008. Orientações sobre Validação de Métodos Analíticos. Rev, 04, 20.Google Scholar
  15. Lau, Y. Y., Wong, Y. S., Teng, T. T., Morad, N., Rafatullah, M., & Ong, S. A. (2014). Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chemical Engineering Journal, 246, 383–390.  https://doi.org/10.1016/j.cej.2014.02.100.CrossRefGoogle Scholar
  16. Leite, L. S., Maselli, B. S., Umbuzeiro, G. A., & Nogueira, R. F. P. (2016). Monitoring ecotoxicity of disperse red 1 dye during photo-Fenton degradation. Chemosphere, 148, 511–517.CrossRefGoogle Scholar
  17. Lima, D. R. S., Almeida, I. L. A., & Paula, V. I. (2016). Degradação do corante azul reativo 5G pelo processo oxidativo avançado UV/H2O2. E-xacta, 9, 101–109.  https://doi.org/10.18674/exacta.v9i2.1915.CrossRefGoogle Scholar
  18. Martins, J. E. C. A., Neto, E. F. A., Lima, A. C. A., Ribeiro, J. P., Maia, F. E. F., & Nascimento, R. F. (2018). Delineamento Box-Behnken para remoção de DQO de efluente têxtil utilizando eletrocoagulação com corrente contínua pulsada. Engenharia Sanitária e Ambiental, 22(6), 1–10.Google Scholar
  19. Mitre, T. K., Leão, M. M. D., & Alvarenga, M. C. N. (2012). Tratamento de águas contaminadas por diesel/biodiesel utilizando processo Fenton. Engenharia Sanitária e Ambiental, 17, 129–136.CrossRefGoogle Scholar
  20. Napoleão, D. C. (2015) Avaliação e tratamento de fármacos oriundos de diferentes estações de tratamento de efluentes empregando processos oxidativos avançado. Tese de doutorado. Universidade Federal de Pernambuco, Recife, UFPE.Google Scholar
  21. Nascimento, G. E., Napoleão, D. C., Aguiar Silva, P. K., Santana, R. M. R., Bastos, A. M. R., Zaidan, L. E. M. C., & Duarte, M. M. M. B. (2018). Photo-assisted degradation, toxicological assessment, and modeling using artificial neural networks of reactive gray BF-2R dye. Water, Air, & Soil Pollution, 229(12), 379.CrossRefGoogle Scholar
  22. Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidationprocesses and biological treatments for wastewater decontamination - a review. Science of the Total Environment, 409, 4141–4166.  https://doi.org/10.1016/j.scitotenv.2010.08.061.CrossRefGoogle Scholar
  23. Palácio, S. M., Nogueira, D. A., Manenti, D. R., Módenes, N. A., Espinoza-Quiñones, F. R., & Borba, F. H. (2012). Estudo da toxicidade de efluente têxtil tratado por foto-Fenton artificial utilizando as espécies Lactuca Sativa e Artemia Salina. Engevista, 14, 127–134.Google Scholar
  24. Paulino, T. R. S., Araújo, R. S., & Salgado, B. C. B. (2015). Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2 ). Engenharia Sanitaria e Ambiental, 20, 347–352.  https://doi.org/10.1590/S1413-41522015020000111627.CrossRefGoogle Scholar
  25. Peixoto, F., Marinho, G., & Rodrigues, K. (2013). Corantes têxteis: uma revisão. Holos, 5, 98–106.CrossRefGoogle Scholar
  26. Pereira, G. F., El-Ghenymy, A., Thiam, A., Carlesi, C., Eguiluz, K. I. B., Salazar-Banda, G. R., & Brillas, E. (2016). Effective removal of Orange-G azo dye from water by electro-Fenton and photoelectro-Fenton processes using a boron-doped diamond anode. Separation and Purification Technology, 160, 145–151.  https://doi.org/10.1016/j.seppur.2016.01.029.CrossRefGoogle Scholar
  27. Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, R., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2016). Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters. Journal of Industrial and Engineering Chemistry, 34, 130–138.  https://doi.org/10.1016/j.jiec.2015.11.001.CrossRefGoogle Scholar
  28. Rajkumar, D., & Palanivelu, K. (2004). Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials, 133, 123–129.  https://doi.org/10.1016/j.jhazmat.2004.05.039.CrossRefGoogle Scholar
  29. Rodrigues, C. O., & Külzer, B. N. (2016). Geração e processos físico-químicos de tratamento de efluentes líquidos contendo pigmentos. Holos Environment, 16(1), 58–69.CrossRefGoogle Scholar
  30. Santana, R. M. R., Nascimento, G. E., Napoleão, D. C., & Duarte, M. M. M. B. (2017). Degradation and kinetic study of reactive blue BF-5G and Remazol red RB 133% dyes using Fenton and photo-Fenton process. Reget., 31, 104–118.  https://doi.org/10.5902/22361170.CrossRefGoogle Scholar
  31. Santana, R. M. R., Nascimento, G. E., Silva, P. K. A., Lucena, A. L. A., Procópio, T. F., Napoleão, T. H., Duarte, M. M. B., & Napoelão, D. C. (2018). Kinetic and ecotoxicological evaluation of the direct orange 26 dye degradation by Fenton and solar photo-Fenton processes. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 22(5), 1–20.Google Scholar
  32. Silva, L. R. C., Silva, T. L., Araújo, F. P., Silva Filho, E. C., & Osajima, J. A. (2017). Uso de fotólise direta e H2O2/UV em solução aquosa contendo o corante violeta cristal. Holos Environment, 17, 138–148.CrossRefGoogle Scholar
  33. Souza, S. J. O., Lobo, T. M., Sabino, A. L. O., Oliveira, S. B., & Costa, O. S. (2010). Decomposição dos antirretrovirais lamivudina e zidovudina pelo processo foto-Fenton assistido no efluente de indústria farmoquímica. Revista Processos Químicos, 4, 5967.CrossRefGoogle Scholar
  34. Su, C. C., Pukdee-Asa, M., Ratanatamskul, C., & Lu, M. C. (2011). Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination, 278, 211–218.  https://doi.org/10.1016/j.desal.2011.05.022.CrossRefGoogle Scholar
  35. Tiburtius, E. R. L., Peralta-Zamora, P., & Emmel, A. (2009). Degradação de benzeno, tolueno e xilenos em águas contaminadas por gasolina, utilizando-se processos foto-Fenton. Química Nova, 32(8), 2058–2063.  https://doi.org/10.1590/S0100-40422009000800014.CrossRefGoogle Scholar
  36. Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety, 76, 182–186.  https://doi.org/10.1016/j.ecoenv.2011.09.019.CrossRefGoogle Scholar
  37. Zaidan, L. E. M. C., Pinheiro, R. B., Santana, R. M. R., Charamba, L. V. C., Napoleão, D. C., & Silva, V. L. (2017). Evaluation of efficiency of advanced oxidative process in degradation of 2-4 dichlorophenol employing UV-C radiation reator. Reget, 21, 147–157.  https://doi.org/10.5902/22361170.CrossRefGoogle Scholar
  38. Zanoni, M. V. B., & Yamanaka, H. (2016). Corantes: caracterização química, toxicológica, métodos de detecção e tratamento (1st ed.). São Paulo: Cultura Acadêmica.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rayany Magali da Rocha Santana
    • 1
  • Lívia Carlini Vieira Charamba
    • 1
  • Graziele Elisandra do Nascimento
    • 1
  • Julierme Gomes Correia de Oliveira
    • 2
  • Deivson Cesar Silva Sales
    • 3
  • Marta Maria Menezes Bezerra Duarte
    • 1
  • Daniella Carla Napoleão
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentFederal University of PernambucoRecifeBrazil
  2. 2.Faculdade Boa Viagem – DevryRecifeBrazil
  3. 3.Escola Politécnica de PernambucoUniversidade de PernambucoRecifeBrazil

Personalised recommendations