Effects of Groundwater Nitrate and Sulphate Enrichment on Groundwater-Fed Mires: a Case Study

  • G. van DijkEmail author
  • J. Wolters
  • C. Fritz
  • H. de Mars
  • G. J. van Duinen
  • K. F. Ettwig
  • N. Straathof
  • A. P. Grootjans
  • A. J. P. Smolders


Mires and peatlands in general are heavily influenced by anthropogenic stressors like acidification, eutrophication, desiccation and fragmentation. Groundwater-fed mires are, in contrast to rainwater-fed mires, often well protected against desiccation due to constant groundwater discharge. Groundwater-fed mires can however be influenced by groundwater pollution such as groundwater nitrate enrichment, a threat which has received minor attention in literature. The present case study demonstrates how groundwater nitrate enrichment can affect the biogeochemical functioning and vegetation composition of groundwater-fed mires through direct nitrogen enrichment and indirect nitrate-induced sulphate mobilisation from geological deposits. Biogeochemical and ecohydrological analyses suggest that the Dutch groundwater-fed mire studied is influenced by different water sources (rainwater; groundwater of local and regional origin) with differing chemical compositions. The weakly buffered and nitrate-enriched groundwater leads, where it reaches the uppermost peat, to nitrogen enrichment, enhanced isotopic nitrogen signatures and altered the vegetation composition at the expense of characteristic species. Nitrate-induced sulphate mobilisation in the aquifer led to enhanced sulphate reduction, sulphide toxicity and elemental sulphur deposition in the mire. Despite sulphate reduction and nitrate enrichment, internal eutrophication did not play an important role, due to relatively low phosphorus concentrations and/or low iron-bound phosphorus of the peat soil. Future management of groundwater-fed mires in nitrate-polluted aquifers should include the reduction of nitrate leaching to the aquifer at the recharge areas by management and ecohydrological restoration measures on both a local and landscape scale.


Biogeochemistry Eutrophication Lignite deposits Nitrate leaching Sulphate mobilisation 



We would like to acknowledge J. Graafland, R. Kuiperij, J. Claas, C. Bufe, B. Zhu, M. Poelen, N. Hofland, J. Loermans, M. Houtekamer, P. van Breugel, P. van der Ven and J. Eijgensteijn for assistance in the field and the laboratory. We acknowledge Natuurmonumenten for their permission to carry out research on the Brunssummerheide and M. Mouthaan, L. Wortel, C. Burger and C. Geujen for assistance in the field and field relevant information. C. Fritz was funded by FACCE-JPI ‘Peatwise’ (NWO grant number ALW.GAS.4).

Supplementary material

11270_2019_4156_MOESM1_ESM.docx (387 kb)
ESM 1 (DOCX 386 kb)


  1. Aerts, R., Wallen, B., & Malmer, N. (1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80, 131–140.Google Scholar
  2. Aerts, R., Verhoeven, J. T. A., & Whigham, D. F. (1999). Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology, 80, 2170–2181.CrossRefGoogle Scholar
  3. Baumann, R. A., Hooijboer, A. E. J., Vrijhoef, A., et al. (2012). Agricultural practice and water quality in the Netherlands in the period 1992-2010. Environmental Monitoring and Assessment, 102, 225–241.Google Scholar
  4. Beaudoin, N., Saad, J. K., Van Laethem, C., et al. (2005). Nitrate leaching in intensive agriculture in northern France: effect of farming practices, soils and crop rotations. Agriculture, Ecosystems and Environment, 111, 292–310.CrossRefGoogle Scholar
  5. Bedford, B. L. (1996). The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecological Applications, 6, 57–68.CrossRefGoogle Scholar
  6. Bobbink, R., & Hettelingh, J.-P. (eds.) (2011). Review and revision of empirical critical loads and dose-response relationships: Proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010. Rijksinstituut voor Volksgezondheid en Milieu RIVM. Utrecht, The NetherlandsGoogle Scholar
  7. Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.CrossRefGoogle Scholar
  8. Borken, W., & Matzner, E. (2004). Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. Journal of Plant Nutrition and Soil Science, 167, 277–283.CrossRefGoogle Scholar
  9. Böttcher, J., Strebel, O., Voerkelius, S., & Schmidt, H.-L. (1990). Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology, 114, 413–424.CrossRefGoogle Scholar
  10. Burow, K. R., Nolan, B. T., Rupert, M. G., & Dubrovsky, N. M. (2010). Nitrate in groundwater of the United States, 1991–2003. Environmental Science & Technology, 44, 4988–4997.CrossRefGoogle Scholar
  11. Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32, 831–849.CrossRefGoogle Scholar
  12. Chaudhuri, S. K., Lack, J. G., & Coates, J. D. (2001). Biogenic magnetite formation through anaerobic biooxidation of Fe (II). Applied and Environmental Microbiology, 67, 2844–2848.CrossRefGoogle Scholar
  13. Cirkel, D. G., Van Beek, C., Witte, J. P. M., & Van der Zee, S. (2014). Sulphate reduction and calcite precipitation in relation to internal eutrophication of groundwater fed alkaline fens. Biogeochemistry, 117, 375–393.CrossRefGoogle Scholar
  14. Cusell, C., Kooijman, A., & Lamers, L. P. M. (2014). Nitrogen or phosphorus limitation in rich fens? - edaphic differences explain contrasting results in vegetation development after fertilization. Plant and Soil, 384. (1-2) 153–168.
  15. De Mars, H., & Wassen, M. J. (1999). Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecology, 140, 41–51.CrossRefGoogle Scholar
  16. De Mars, H., van der Weijden, B., van Dijk, G., Smolders, A.J.P., Grootjans, A.P., Wolejko, L. (2017) Towards threshold values for nutrients; petrifying springs in South Limburg in northwest European context. Report OBN2016/210-HE, VBNE, Driebergen.
  17. Reddy, K. R., Delaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. CRC, Taylor and Francis Group, Boca RatonGoogle Scholar
  18. van den Elzen, E., van den Berg, L. J. L., van der Weijden, B., et al. (2018). Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. Science of the Total Environment, 610–611, 732–740. Scholar
  19. Di, H. J., & Cameron, K. C. (2002). Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 64, 237–256.CrossRefGoogle Scholar
  20. van Diggelen, R., Middleton, B., Bakker, J., et al. (2006). Fens and floodplains of the temperate zone: Present status, threats, conservation and restoration. Applied Vegetation Science, 9, 157–162.CrossRefGoogle Scholar
  21. van Dijk, G., Smolders, A. J. P., Fritz, C., et al. (2012). Ecologische gradiënten op de helling in de Brunssummerheide. De Levende Natuur, 113, 174–179.Google Scholar
  22. van Dijk, G., van Kleef, H. H., van Duinen, G.-J. A., et al. (2014). De rijke watermacrofauna van het hellingveen op de Brunssummerheide. Natuurhistorisch Maandblad, 103, 293–298.Google Scholar
  23. van Dijk, G., Smolders, A. J. P., Loeb, R., et al. (2015). Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry. Biogeochemistry, 126. (1–2) 71–84.
  24. Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–161.CrossRefGoogle Scholar
  25. Dise, N.B., Matzner, E. & Forsius, M., (1998). Evaluation of organic horizon C: N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environmental Pollution, 102 (1), 453–456.Google Scholar
  26. Dubelaar, C., & Menkovic, A. (1998). Coring information database TNO. Accessed 20 June 2018.
  27. Ferreira, V., Gulis, V., & Graça, M. A. S. (2006). Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 149, 718–729.CrossRefGoogle Scholar
  28. Fraters, B., Hooijboer, A. E. J., Vrijhoef, A., et al (2016) Landbouwpraktijk en waterkwaliteit in Nederland; toestand (2012-2014) en trend (1992-2014): resultaten van de monitoring voor de Nitraatrichtlijn. RIVM Rapport 2016-0076, Bilthoven, the NetherlandsGoogle Scholar
  29. Fritz, C., van Dijk, G., Smolders, A. J. P., et al. (2012). Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology, 14(3), 491–499.
  30. Fritz, C., Lamers, L. P. M., Riaz, M., et al. (2014). Sphagnum mosses - masters of efficient N-uptake while avoiding intoxication. PLoS ONE, 9(1), e79991.
  31. Gorham, E. (1955). On some factors affecting the chemical composition of Swedish fresh waters. Geochimica et Cosmochimica Acta, 7, 129–150.CrossRefGoogle Scholar
  32. Goulding, K. (2000). Nitrate leaching from arable and horticultural land. Soil Use and Management, 16, 145–151.CrossRefGoogle Scholar
  33. Grootjans, A. P., Adema, E. B., Bleuten, W., et al. (2006). Hydrological landscape settings of base-rich fen mires and fen meadows: an overview. Applied Vegetation Science, 9, 175–184.CrossRefGoogle Scholar
  34. Gundersen, P., Callesen, I., & De Vries, W. (1998). Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental pollution, 102(1), 403–407.Google Scholar
  35. Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests effects of air pollution and forest management. Environmental Reviews, 14, 1–57.CrossRefGoogle Scholar
  36. Haaijer, S. C. M., Lamers, L. P. M., Smolders, A. J. P., et al. (2007). Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiology Journal, 24, 391–401.CrossRefGoogle Scholar
  37. Hartog, N., Griffioen, J., & van der Weijden, C. H. (2002). Distribution and reactivity of O2-reducing components in sediments from a layered aquifer. Environmental Science & Technology, 36, 2338–2344.CrossRefGoogle Scholar
  38. Hausmann, B., Knorr, K.-H., Schreck, K., et al. (2016). Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms. The ISME Journal, 10, 2365.CrossRefGoogle Scholar
  39. Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324(80), 636–638.CrossRefGoogle Scholar
  40. Holden, J., Chapman, P. J., & Labadz, J. C. (2004). Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 28, 95–123.CrossRefGoogle Scholar
  41. Howden, N. J. K., Burt, T. P., Worrall, F., et al. (2011). Nitrate pollution in intensively farmed regions: what are the prospects for sustaining high-quality groundwater? Water Resources Research, 47. W00L02.
  42. Jauhiainen, J., Wallén, B., & Malmer, N. (1998). Potential NH 4+ and NO 3− uptake in seven Sphagnum species. The New Phytologist, 138, 287–293.CrossRefGoogle Scholar
  43. Joosten, H., & Clarke, D. (2002). Wise use of mires and peatlands. International Mire Conservation Group / International Peat Society, Saarijarvi, FinlandGoogle Scholar
  44. Kirchmann, H., Johnston, A. E. J., & Bergström, L. F. (2002). Possibilities for reducing nitrate leaching from agricultural land. AMBIO A Journal of the Human Environment, 31, 404–408.CrossRefGoogle Scholar
  45. van Kleef, H. H., van Duinen, G.-J. A., Verberk, W. C. E. P., et al. (2012). Moorland pools as refugia for endangered species characteristic of raised bog gradients. Journal for Nature Conservation, 20, 255–263.CrossRefGoogle Scholar
  46. Kooijman, A. M. (2012). Poor rich fen mosses’: Atmospheric N-deposition and P-eutrophication in base-rich fens. Lindbergia, 35, 42–52.Google Scholar
  47. Korom, S. F., Schuh, W. M., Tesfay, T., & Spencer, E. J. (2012). Aquifer denitrification and in situ mesocosms: modeling electron donor contributions and measuring rates. Journal of Hydrology, 432, 112–126.CrossRefGoogle Scholar
  48. Lamers, L. P. M., Tomassen, H. B. M., & Roelofs, J. G. M. (1998). Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environmental Science & Technology, 32, 199–205. Scholar
  49. Lamers, L. P. M., Bobbink, R., & Roelofs, J. G. M. (2000). Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6, 583–586.CrossRefGoogle Scholar
  50. Lamers, L. P. M., Ten Dolle, G. E., Van Den Berg, S. T. G., et al. (2001). Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry, 55, 87–101.CrossRefGoogle Scholar
  51. Lamers, L. P. M., Falla, S., Samborska, E. M., et al. (2002a). Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. Limnology and Oceanography, 47, 585–593.CrossRefGoogle Scholar
  52. Lamers, L. P. M., Smolders, A. J. P., & Roelofs, J. G. M. (2002b). The restoration of fens in the Netherlands. Hydrobiologia, 478, 107–130.CrossRefGoogle Scholar
  53. Lamers, L. P. M., Van Diggelen, J. M. H., Op Den Camp, H. J. M., et al. (2012). Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Frontiers in Microbiology, 3, 156.CrossRefGoogle Scholar
  54. Lamers, L. P. M., Govers, L. L., Janssen, I. C. J. M., et al. (2013). Sulfide as a soil phytotoxin—a review. Frontiers in Plant Science, 4, 268.CrossRefGoogle Scholar
  55. Lamers, L. P. M., Vile, M. A., Grootjans, A. P., et al. (2015). Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-based approach. Biological Reviews of the Cambridge Philosophical Society, 90, 182–203.
  56. Lehmann, M. F., Reichert, P., Bernasconi, S. M., et al. (2003). Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochimica et Cosmochimica Acta, 67, 2529–2542.CrossRefGoogle Scholar
  57. Limpens, J., Berendse, F., & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. The New Phytologist, 157, 339–347.CrossRefGoogle Scholar
  58. Limpens, J., Berendse, F., & Klees, H. (2004). How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7, 793–804.CrossRefGoogle Scholar
  59. Lucassen, E., Smolders, A. J. P., van der Salm, A. L., & Roelofs, J. G. M. (2004). High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry, 67, 249–267.CrossRefGoogle Scholar
  60. MacDonald, J. A., Dise, N. B., Matzner, E., et al. (2002). Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8, 1028–1033.CrossRefGoogle Scholar
  61. Madigan, M. T., & Jung, D. O. (2009). An overview of purple bacteria: systematics, physiology, and habitats. In The purple phototrophic bacteria (pp. 1–15). Springer.Google Scholar
  62. Martin, C., Aquilina, L., Gascuel-Odoux, C., et al. (2004). Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments. Hydrological Processes, 18, 1237–1254.CrossRefGoogle Scholar
  63. Nestler, A., Berglund, M., Accoe, F., et al. (2011). Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research, 18, 519–533.CrossRefGoogle Scholar
  64. Pester, M., Knorr, K.-H., Friedrich, M. W., et al. (2012). Sulfate-reducing microorganisms in wetlands–fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3, 72.CrossRefGoogle Scholar
  65. Postma, D., Boesen, C., Kristiansen, H., & Larsen, F. (1991). Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling. Water Resources Research, 27, 2027–2045.CrossRefGoogle Scholar
  66. Rivett, M. O., Buss, S. R., Morgan, P., et al. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Research, 42, 4215–4232.CrossRefGoogle Scholar
  67. Rothe, A., & Mellert, K. H. (2004). Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water, Air, and Soil Pollution, 156, 337–355.CrossRefGoogle Scholar
  68. Schaminée, J. H. J., Weeda, E. J., Westhoff, V. (1995). De vegetatie van Nederland. Deel 2: Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus, Uppsala.Google Scholar
  69. Schwientek, M., Einsiedl, F., Stichler, W., et al. (2008). Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system. Chemical Geology, 255, 60–67.CrossRefGoogle Scholar
  70. Shibata, H., Galloway, J. N., Leach, A. M., et al. (2017). Nitrogen footprints: regional realities and options to reduce nitrogen loss to the environment. Ambio, 46, 129–142.CrossRefGoogle Scholar
  71. Sigman, D. M., Altabet, M. A., Michener, R., et al. (1997). Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry, 57, 227–242.CrossRefGoogle Scholar
  72. Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., et al. (2006). Internal eutrophication: How it works and what to do about it - a review. Chemistry and Ecology, 22, 93–111. Scholar
  73. Smolders, A. J. P., Lucassen, E. C., Bobbink, R., et al. (2010). How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry, 98, 1–7.CrossRefGoogle Scholar
  74. Stites, W., & Kraft, G. J. (2001). Nitrate and chloride loading to groundwater from an irrigated north-central US sand-plain vegetable field. Journal of Environmental Quality, 30, 1176–1184.CrossRefGoogle Scholar
  75. Straub, K. L., Benz, M., Schink, B., & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62, 1458–1460.Google Scholar
  76. Succow, M., & Joosten, H. (2001). Landschaftsökologische Moorkunde. Stuttgart: Schweizerbart Science Publishers.Google Scholar
  77. Swierstra, W. (2008). Passende beoordeling Sigrano Groeve, 9T3160/R004/WSW/Maas. Maastricht: Eindrapportage, RH-DHV.Google Scholar
  78. Thorburn, P. J., Biggs, J. S., Weier, K. L., & Keating, B. A. (2003). Nitrate in groundwaters of intensive agricultural areas in coastal northeastern Australia. Agriculture, Ecosystems and Environment, 94, 49–58.CrossRefGoogle Scholar
  79. Tomassen, H. B. M., Smolders, A. J. P., Limpens, J., et al. (2004). Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? Journal of Applied Ecology, 41, 139–150.CrossRefGoogle Scholar
  80. Van Breemen, N. (1995). How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10, 270–275.CrossRefGoogle Scholar
  81. Verberk, W., Van Duinen, G. A., Brock, A. M. T., et al. (2006). Importance of landscape heterogeneity for the conservation of aquatic macroinvertebrate diversity in bog landscapes. Journal for Nature Conservation, 14, 78–90.CrossRefGoogle Scholar
  82. Verhoeven, J. T. A., Koerselman, W., & Meuleman, A. F. M. (1996). Nitrogen-or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution, 11, 494–497.CrossRefGoogle Scholar
  83. Wassen, M. J., Venterink, H. O., Lapshina, E. D., & Tanneberger, F. (2005). Endangered plants persist under phosphorus limitation. Nature, 437, 547.CrossRefGoogle Scholar
  84. Wheeler, B. D., & Proctor, M. C. F. (2000). Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology, 88, 187–203.CrossRefGoogle Scholar
  85. Zhang, Y.-C., Slomp, C. P., Broers, H. P., et al. (2009). Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochimica et Cosmochimica Acta, 73, 6716–6726.CrossRefGoogle Scholar
  86. Zhang, Y.-C., Slomp, C. P., Broers, H. P., et al. (2012). Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer. Chemical Geology, 300, 123–132.CrossRefGoogle Scholar
  87. Zhu, B., van Dijk, G., Fritz, C., et al. (2012). Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria. Applied and Environmental Microbiology, 78.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.B-WARE Research CentreRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Aquatic Ecology and Environmental Biology Ecology, Institute of Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
  3. 3.Department of Biology, Ecosystem Management Research GroupUniversity of AntwerpWilrijkBelgium
  4. 4.Centre for Energy and Environmental StudiesUniversity of GroningenGroningenThe Netherlands
  5. 5.Royal HaskoningDHVMaastricht-AirportThe Netherlands
  6. 6.Bargerveen FoundationNijmegenThe Netherlands
  7. 7.Department of Microbiology, Institute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
  8. 8.Vereniging Natuurmonumenten’s GravelandThe Netherlands

Personalised recommendations