Advertisement

Growth of Tetraselmis suecica and Dunaliella tertiolecta in Aquaculture Wastewater: Numerical Simulation with the BIO_ALGAE Model

  • Valeria AndreottiEmail author
  • Alessandro Solimeno
  • Anuta Chindris
  • Francesca Marazzi
  • Joan García
Article
  • 94 Downloads

Abstract

This study investigates and compares the uptake of nutrients (nitrogen, phosphorus) and the growth of Tetraselmis suecica and Dunaliella tertiolecta in aquaculture wastewater. The obtained data were used to implement and calibrate the microalgae-bacteria model BIO_ALGAE to simulate the bioremediation and the biomass production of these species. The microalgae were cultivated in batch conditions for 7 days using 120-L vertical column photobioreactors. In the first 4 days, after which the algal density reached a steady state, the average biomass production was 83.7 ± 4.4 mg/L/day for T. suecica and 56.4 ± 5.1 mg/L/day for D. tertiolecta. The two species were able to remove more than 96% of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP). The total lipid content was analyzed at the end of the 7 days; T. suecica and D. tertiolecta had different lipid content: 75.8 ± 1.6% and 23.2 ± 2.0%, respectively. The BIO_ALGAE model fits very well the experimental data of both species in terms of biomass and nutrient uptake and could be an effective tool to predict the production of microalgae using aquaculture wastewater as growth media, obtaining at the same time the removal of nutrients from wastewater and the production of biomass to be used as feed. In particular, this mathematical model can be applied to forecast the performance under different operating conditions, for the design, optimization, and control of the process in aquaculture systems.

Keywords

Wastewater Aquaculture Microalgae Mathematical model Bioremediation 

Notes

Funding Information

This research was supported by the Sardinia Research plan activity, Art. 26 of LR 37/98, “Experimental systems for microalgae biomass production, applications for aquaculture.”

Supplementary material

11270_2019_4122_MOESM1_ESM.docx (131 kb)
ESM 1 (DOCX 130 kb)

References

  1. Alsull, M. & Omar, W. (2012). Responses of Tetraselmis sp. and Nannochloropsis sp. isolated from Penang National Park Coastal Waters, Malaysia, to the combined influences of salinity, light and nitrogen limitation. International Conference on Chemical, Ecology and Environmental Sciences (ICEES’2012); Mar 17–18; Bangkok; (2012) 142–145.Google Scholar
  2. Andreotti, V., Chindris, A., Brundu, G., Vallainc, D., Francavilla, M., & García, J. (2017). Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Chemistry and Ecology, 33(8), 750–761.CrossRefGoogle Scholar
  3. Ansari, F. A., Singh, P., Guldhe, A., & Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Research, 21, 169–177.CrossRefGoogle Scholar
  4. Austin, B., Bauder, E., & Stobie, M. B. C. (1992). Inhibition of bacterial fish pathogens by Tetraselmsis suecica. Journal of Fish Diseases, 15, 55–61.CrossRefGoogle Scholar
  5. Berge, J. P., & Barnathan, G. (2005). Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. In T. Scheper (Ed.), Marine biotechnology I: Advances in biochemical engineering/ biotechnology (Vol. 96, pp. 49–125).CrossRefGoogle Scholar
  6. Bernard, O. (2011). Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control, 21, 1378–1389.CrossRefGoogle Scholar
  7. Bernard, O., Mairet, F., & Chachuat, B. (2016). Modelling of microalgae culture systems with applications to control and optimization. Advances in Biochemical Engineering/Biotechnology, 153, 59–87.CrossRefGoogle Scholar
  8. Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S., & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Computers and Electronics in Agriculture, 76, 131–147.CrossRefGoogle Scholar
  9. Bondioli, P., Della Bella, L., Rivolta, G., Chini Zittelli, G., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D., & Tredici, M. R. (2012). Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresource Technology, 114, 567–572.CrossRefGoogle Scholar
  10. Borges, M. P., Silva, P., Moreira, L., & Soares, R. (2005). Integration of consumer-targeted microalgal production with marine fish effluent biofiltration – a strategy for mariculture sustainability. Journal of Applied Phycology, 17, 187–197.CrossRefGoogle Scholar
  11. Brown, M. R., Jeffery, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151(1–4), 315–331.CrossRefGoogle Scholar
  12. Chang, T., Ohta, S., Ikegami, N., Miyata, H., Kashimoto, T., & Kondo, M. (1993). Antibiotic substances produced by a marine green alga, Dunaliella primolecta. Bioresource Technology, 44, 149–153.CrossRefGoogle Scholar
  13. Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. Y., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102, 1649–1655.CrossRefGoogle Scholar
  14. Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2006). Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 261, 932–943.CrossRefGoogle Scholar
  15. Chisti, Y. (2007a). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  16. Chisti, Y. (2007b). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.CrossRefGoogle Scholar
  17. Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702.CrossRefGoogle Scholar
  18. Droop, M. R. (1968). Vitamin B12 and marine ecology. IV. The kinetics of uptake growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association, 48(3), 689–733.CrossRefGoogle Scholar
  19. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497–509.Google Scholar
  20. Freire, I., Serradeiro, R., Laranjeira, A., Peña, J., Seixas, P. (2013). Cultivo de las microalgas Tetraselmis e Isochrysis T-ISO con efluentes de una piscifactoría en RAS de Portugal. XIV Congr Nac Acuic, 2013 (AS 2570-2013).Google Scholar
  21. Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., Liu, J. Z., Liu, M., & Cai, H. W. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55–61.CrossRefGoogle Scholar
  22. Guedes, A. C., & Malcata, F. X. (2012). Nutritional value, and uses of microalgae in aquaculture. In Z. A. Muchlisin (Ed.), Aquaculture (pp. 59–78).  https://doi.org/10.5772/1516.CrossRefGoogle Scholar
  23. Guevara, M., Lodeiros, C., Gómez, O., Lemus, N., Núñez, P., Romero, L., Vásquez, A., & Rosales, N. (2005). Carotenogénesis de cinco cepas del alga Dunaliella sp. (Chlorophyceae) aisladas de lagunas hipersalinas de Venezuela. Revista De Biologia Tropical, 55, 7.Google Scholar
  24. Guiheneuf, F., Mimouni, V., Ulmann, L., & Tremblin, G. (2008). Environmental factors affecting growth and omega 3 fatty acid composition in Skeletonema costatum. The influences of irradiance and carbon source. Diatom Research, 23, 93–103.CrossRefGoogle Scholar
  25. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of Marine Invertebrate Animals (pp. 26–60). New York: Plenum Press.Google Scholar
  26. Guillard, R. R. L., & Ryther, J. H. (1962). Studies of marine planktonic diatoms I. Cyclotella nana (Hustedt) and Detonula confervacea (cleve). Canadian Journal of Microbiology, 8, 229–239.CrossRefGoogle Scholar
  27. Guldhe, A., Ansari, F. A., Singh, P., & Bux, F. (2017). Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 99, 47–53.CrossRefGoogle Scholar
  28. Iacopozzi, I., Innocenti, V., Marsili-Libelli, S., & Giusti, E. (2007). A modified activated sludge model no. 3 (ASM3) with two-step nitrification-denitrification. Environmental Modelling & Software, 22(6), 847–861.CrossRefGoogle Scholar
  29. Islam, M. S. (2005). Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin, 50, 48–61.CrossRefGoogle Scholar
  30. Khatoon, H., Haris, H., Rahman, N.A., Zakaria, M. N., Begum, H., & Mian, S., (2018). Growth, proximate pomposition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. Journal of Ocean University of China (Oceanic and Coastal Sea Research), 17(3), 641-646.Google Scholar
  31. Khatoon, H., Banerjee, S., Syahiran, M. S., Noordin, N. M., Bolong, A. M. A., & Endut, A. (2016). Re-use of aquaculture wastewater in cultivating microalgae as live feed for aquaculture organisms. Desalination and Water Treatment, 57, 1–8.  https://doi.org/10.1080/19443994.2016.1156030.CrossRefGoogle Scholar
  32. Kim, S. K., Jeon, Y. J., Kim, W. S., Back, H. C., Park, P. J., Byun, H. G., & Bai, S. C. (2001). Biochemical composition of marine microalgae and their potential antimicrobial activity. Journal of Fish Science and Technology, 4(2), 75–83.Google Scholar
  33. Kiridi, E. A., & Ogunlela, A. O. (2016). Modelling phytoremediation rates of aquatic Macrophytes in aquaculture effluent. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 10(3), 353–360.Google Scholar
  34. Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.CrossRefGoogle Scholar
  35. Lamprianidou, F., Telfer, T., & Ross, L. G. (2015). A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture. Estuarine, Coastal and Shelf Science, 164, 253–264.CrossRefGoogle Scholar
  36. Lananan, F., Abdul Hamid, S. H., Din, W. N. S., Ali, N., Khatoon, H., Jusoh, A., & Endut, A. (2014). Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing effective microorganism (EM-1) and microalgae (Chlorella sp.). International Biodeterioration and Biodegradation, 95, 127–134.CrossRefGoogle Scholar
  37. Lemesle, V. & Mailleret, L. (2008). A mechanistic investigation of the algae growth “Droop” model. Acta Biotheoretica, 56(1–2), 87–102.Google Scholar
  38. Lombardi, A. T., & Wangersky, P. J. (1995). Particulate lipid class composition of 3 marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia, 306, 1–6.CrossRefGoogle Scholar
  39. Lowrey, J.B. (2011). Seawater/wastewater production of microalgae-based biofuels in closed loop tubular Photobioreactors, (MSc in Agriculture, Agricultural Engineering Technology, The Faculty of California Polytechnic State University, San Luis Obispo, USA (Unpublished).Google Scholar
  40. Mairet, F., Bernard, O., Masci, P., Lacour, T., & Sciandra, A. (2011). Modelling neutral lipid production by the microalga Isochrysis affinis galbana under nitrogen limitation. Bioresource Technology, 102, 142–149.CrossRefGoogle Scholar
  41. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 14, 217–232.CrossRefGoogle Scholar
  42. Michels, M. H. A., Vaskoska, M., Vermuё, M. H., & Wijffels, R. H. (2014). Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm. Water Research, 65, 290–296.CrossRefGoogle Scholar
  43. Milhazes-Cunha, H., & Otero, A. (2017). Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal Research, 24, 416–424.CrossRefGoogle Scholar
  44. Morel, E. M. M. (1987). Kinetics of uptake and growth in phytoplankton. Journal of Phycology, 23, 137–150.CrossRefGoogle Scholar
  45. Muller-Feuga, A., Moal, J., & Kaas, R. (2007). The microalgae of aquaculture. In Live Feeds in Marine Aquaculture.  https://doi.org/10.1002/9780470995143.ch7.CrossRefGoogle Scholar
  46. Nasir, N. M., Bakar, N. S., Lananan, F., Abdul Hamid, S. H., Lam, S. S., & Jusoh, A. (2015). Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresource Technology, 190, 492–498.CrossRefGoogle Scholar
  47. NMKL – Procedur nr. 25 (2012). Utbyte (Recovery) vid kemiska analytiska mätninger, 30 p.Google Scholar
  48. Oswald, W. J. (2001). Introduction to advanced integrated wastewater pounding systems. Water Science and Technology, 24, 1–7.CrossRefGoogle Scholar
  49. Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbiology and Biotechnology, 90, 1429–1441.CrossRefGoogle Scholar
  50. Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L., & Vanrolleghem, P. (2001). River water quality model no. 1 (RWQM1): II. Biochemical process equations. Water science and technology: a journal of the International Association on Water Pollution Research, 43(5), 11–30.CrossRefGoogle Scholar
  51. Renaud, S. M., Thinh, L. V., & Parry, D. L. (1999). The gross composition and fatty acid composition of 18 species of tropical Australia microalgae for possible use in mariculture. Aquaculture, 170, 147–159.CrossRefGoogle Scholar
  52. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.CrossRefGoogle Scholar
  53. Rodriguez-Mata, A. E., Torres-Muñoz, J. A., Domínguez-Bocanegra, A. R., Flores, G., & Rangel-Peraza, G. (2016). Nonlinear robust control for a photobioreactor in prescence of parametric disturbances. Revista Mexicana de Ingeniería Química, 15(3), 985–993.Google Scholar
  54. Ryckebosch, E., Muylaert, K., & Foubert, I. (2012). Optimization of an analytical procedure for extraction of lipids from microalgae. Journal of the American Oil Chemists’ Society, 89, 189–198.  https://doi.org/10.1007/s11746-011-1903-z.CrossRefGoogle Scholar
  55. Saiu, G., Pistis, A., Chindris, A., Grosso, M., Baroli, M., & Scano, E. A. (2016). Study of the growth parameters of the Nannochloropsis oculata for the nitrogen and phosphorus removal from wastewater through design of experiment approach. Chemical Engineering Transactions, 49, 553–558.Google Scholar
  56. Singh, P., Guldhe, A., Kumari, S., Rawat, I., & Bux, F. (2015). Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. The Biochemical Engineering Journal, 94, 22–29.CrossRefGoogle Scholar
  57. Solimeno, A., Samsó, R., Uggetti, E., Sialve, B., Steyer, J. P., Gabarró, A., & García, J. (2015). New mechanistic model to simulate microalgae growth. Algal Research, 12, 350–358.CrossRefGoogle Scholar
  58. Solimeno, A., Samsó, R., & García, J. (2016). Parameter sensitivity analysis of a mechanistic model to simulate microalgae growth. Algal Research, 15, 217–223.CrossRefGoogle Scholar
  59. Solimeno, A., Parker, L., Lundquist, T., & García, J. (2017a). Integral microalgae-bacteria model (BIO_ALGAE): application to wastewater high rate algal ponds. Science of the Total Environment, 601–602, 646–657.CrossRefGoogle Scholar
  60. Solimeno, A., Acién, F. G., & García, J. (2017b). Mechanistic model for design, analysis, operation and control of microalgae cultures: calibration and application to tubular photobioreactors. Algal Research, 21, 236–246.CrossRefGoogle Scholar
  61. Tang, H., Chen, M., Simon Ng, K. Y., & Salley, S. O. (2012). Continuous microalgaecultivation in a photobioreactor. Biotechnology and Bioengineering, 109, 2468–2474.CrossRefGoogle Scholar
  62. Tsukahara, K., & Sawayama, S. (2005). Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute, 48, 251–259.CrossRefGoogle Scholar
  63. Velichkova, K., Sirakov, I., & Stoyanova, S. (2014). Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources. Scientific Bulletin. Series F. Biotechnologies, 18, 83–88.Google Scholar
  64. Wu, K. C., Ho, K. C., & Yau, Y. H. (2015). Effective removal of nitrogen and phosphorus from saline sewage by Dunaliella tertiolecta through acclimated cultivation modern. Environmental Science and Engineering, 1(5), 225–234.CrossRefGoogle Scholar
  65. Wuang, S. C., Khin, M. C., Chua, P. Q. D., & Luo, Y. D. (2016). Use of spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64.CrossRefGoogle Scholar
  66. Xin, L., Hong-Ying, H., Ke, G., & Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494–5500.CrossRefGoogle Scholar
  67. Zheng, J., Hao, J., Wang, B., & Shui, C. (2011). Bioremediation of aquaculture wastewater by microalgae Isochrysis zhanjiangensis and production of the biomass material. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 460–461, 491–495.Google Scholar
  68. Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P., & Ruan, R. (2012). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110, 448–455.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental EngineeringUniversitat Politècnica de Catalunya BarcelonaTechBarcelonaSpain
  2. 2.International Marine Centre IMCTorregrandeItaly
  3. 3.DISATUniversity of Milano-BicoccaMilanItaly

Personalised recommendations