Advertisement

Pyrene Degradation by Mycobacterium gilvum: Metabolites and Proteins Involved

  • Fengji Wu
  • Chuling GuoEmail author
  • Shasha Liu
  • Xujun Liang
  • Guining Lu
  • Zhi Dang
Article
  • 138 Downloads

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are toxic organic pollutants and omnipresent in the aquatic and terrestrial ecosystems. A high-efficient pyrene-degrading strain CP13 was isolated from activated sludge and identified as Mycobacterium gilvum based on the analysis of 16S rRNA gene sequence. More than 95% of pyrene (50 mg L−1) was removed by CP13 within 7 days under the alkaline condition. Pyrene metabolites, including 4-phenanthrenecarboxylic acid, 4-phenanthrenol, 1-naphthol, and phthalic acid, were detected and characterized by GC-MS. Results suggested that pyrene was initially attacked at positions C-4 and C-5, then followed by ortho cleavage, and further degraded following the phthalate metabolic pathway. Analysis of pyrene-induced proteins showed that the extradiol dioxygenase, a key enzyme involved in pyrene degradation, was highly up-regulated in pH 9 incubation condition, which illustrated the high efficiency of CP13 under alkaline environment. The present study demonstrated that the isolated bacterial strain CP13 is a good candidate for bioremediation of alkaline PAH-contaminated sites.

Keywords

Alkaline environment Biodegradation Metabolites Mycobacterium Protein expression Pyrene 

Notes

Funding Information

This work was supported by the Guangdong Provincial Science and Technology Projects (2014A020217002 and 2016B020242004).

References

  1. Badejo, A. C., Badejo, A. O., Shin, K. H., & Chai, Y. G. (2013a). A gene expression study of the activities of aromatic ring-cleavage dioxygenases in Mycobacterium gilvum PYR-GCK to changes in salinity and pH during pyrene degradation. PLoS One, 8(2), e58066.  https://doi.org/10.1371/journal.pone.0058066.CrossRefGoogle Scholar
  2. Badejo, A. C., Choi, C. W., Badejo, A. O., Shin, K. H., Hyun, J. H., Lee, Y. G., et al. (2013b). A global proteome study of Mycobacterium gilvum PYR-GCK grown on pyrene and glucose reveals the activation of glyoxylate, shikimate and gluconeogenetic pathways through the central carbon metabolism highway. Biodegradation, 24(6), 741–752.  https://doi.org/10.1007/s10532-013-9622-9.CrossRefGoogle Scholar
  3. Balcom, I. N., & Crowley, D. E. (2010). Isolation and characterization of pyrene metabolizing microbial consortia from the plant rhizoplane. International Journal of Phytoremediation, 12(6), 599–615.  https://doi.org/10.1080/15226510903390437.CrossRefGoogle Scholar
  4. Chauhan, A., & Jain, R. K. (2010). Biodegradation: Gaining insight through proteomics. Biodegradation, 21(6), 861–879.  https://doi.org/10.1007/s10532-010-9361-0.CrossRefGoogle Scholar
  5. Chebbi, A., Hentati, D., Zaghden, H., Baccar, N., Rezgui, F., Chalbi, M., et al. (2017). Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. International Biodeterioration & Biodegradation, 122, 128–140.  https://doi.org/10.1016/j.ibiod.2017.05.006.CrossRefGoogle Scholar
  6. Chen, J., Aries, E., Collins, P., Anderson, D. R., & Hodges, J. S. (2015). Characterization of priority substances in effluents from an integrated steelworks in the United Kingdom. Water Environment Research, 87(2), 132–144.  https://doi.org/10.2175/106143014X14062131179311.CrossRefGoogle Scholar
  7. Dean-Ross, D., & Cerniglia, C. E. (1996). Degradation of pyrene by Mycobacterium flavescens. Applied Microbiology and Biotechnology, 46(3), 307–312.CrossRefGoogle Scholar
  8. Guo, C. L., Dang, Z., Wong, Y. S., & Tam, N. F. (2010). Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. International Biodeterioration & Biodegradation, 64(6), 419–426.  https://doi.org/10.1016/j.ibiod.2010.04.008.CrossRefGoogle Scholar
  9. Habe, H., Kanemitsu, M., Nomura, M., Takemura, T., Iwata, K., Nojiri, H., et al. (2004). Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. Journal of Bioscience and Bioengineering, 98(4), 306–308.  https://doi.org/10.1263/Jbb.98.306.CrossRefGoogle Scholar
  10. Hadibarata, T., Khudhair, A. B., Kristanti, R. A., & Kamyab, H. (2017). Biodegradation of pyrene by Candida sp. S1 under high salinity conditions. Bioprocess and Biosystems Engineering, 40, 1411–1418.  https://doi.org/10.1007/s00449-017-1798-7.CrossRefGoogle Scholar
  11. Hilyard, E. J., Jones-Meehan, J. M., Spargo, B. J., & Hill, R. T. (2008). Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sediments. Applied and Environmental Microbiology, 74(4), 1176–1182.  https://doi.org/10.1128/Aem.01518-07.CrossRefGoogle Scholar
  12. Jin, J. N., Yao, J., Zhang, Q. Y., & Liu, J. L. (2016). Biodegradation of pyrene by pseudomonas sp. JPN2 and its initial degrading mechanism study by combining the catabolic nahAc gene and structure-based analyses. Chemosphere, 164, 379–386.  https://doi.org/10.1016/j.chemosphere.2016.08.113.CrossRefGoogle Scholar
  13. Kim, S. J., Jones, R. C., Cha, C. J., Kweon, O., Edmondson, R. D., & Cerniglia, C. E. (2004). Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics, 4(12), 3899–3908.  https://doi.org/10.1002/pmic.200400872.CrossRefGoogle Scholar
  14. Kim, Y. H., Freeman, J. P., Moody, J. D., Engesser, K. H., & Cerniglia, C. E. (2005). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Applied Microbiology and Biotechnology, 67(2), 275–285.  https://doi.org/10.1007/s00253-004-1796-y.CrossRefGoogle Scholar
  15. Kim, S. J., Kweon, O., Jones, R. C., Freeman, J. P., Edmondson, R. D., & Cerniglia, C. E. (2007). Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. Journal of Bacteriology, 189(2), 464–472.  https://doi.org/10.1128/Jb.01310-06.CrossRefGoogle Scholar
  16. Kim, S. J., Song, J., Kweon, O., Holland, R. D., Kim, D. W., Kim, J., et al. (2012). Functional robustness of a polycyclic aromatic hydrocarbon metabolic network examined in a nidA aromatic ring-hydroxylating oxygenase mutant of Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 78(10), 3715–3723.  https://doi.org/10.1128/Aem.07798-11.CrossRefGoogle Scholar
  17. Kristanti, R. A., Hadibarata, T., Al Farraj, D. A., Elshikh, M. S., & Alkufeidy, R. M. (2018). Biodegradation mechanism of phenanthrene by Halophilic Hortaea sp B15. Water, Air, and Soil Pollution, 229(10).  https://doi.org/10.1007/s11270-018-3969-9.
  18. Krivobok, S., Kuony, S., Meyer, C., Louwagie, M., Willison, J. C., & Jouanneau, Y. (2003). Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: Evidence for two ring-hydroxylating dioxygenases. Journal of Bacteriology, 185(13), 3828–3841.  https://doi.org/10.1128/Jb.185.13.3828.3841.2003.CrossRefGoogle Scholar
  19. Kumari, S., Regar, R. K., & Manickam, N. (2018). Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource Technology, 254, 174–179.  https://doi.org/10.1016/j.biortech.2018.01.075.CrossRefGoogle Scholar
  20. Kweon, O., Kim, S. J., Holland, R. D., Chen, H. Y., Kim, D. W., Gao, Y., et al. (2011). Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 193(17), 4326–4337.  https://doi.org/10.1128/Jb.00215-11.CrossRefGoogle Scholar
  21. Kweon, O., Kim, S. J., Kim, D. W., Kim, J. M., Kim, H. L., Ahn, Y., et al. (2014). Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 196(19), 3503–3515.  https://doi.org/10.1128/Jb.01945-14.CrossRefGoogle Scholar
  22. Liang, Y., Gardner, D. R., Miller, C. D., Chen, D., Anderson, A. J., Weimer, B. C., et al. (2006). Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Applied and Environmental Microbiology, 72(12), 7821–7828.  https://doi.org/10.1128/Aem.01274-06.CrossRefGoogle Scholar
  23. Ling, J. Y., Zhang, G. Y., Sun, H. B., Fan, Y. Y., Ju, J. H., & Zhang, C. K. (2011). Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. Science of the Total Environment, 409(10), 1994–2000.  https://doi.org/10.1016/j.scitotenv.2011.02.020.CrossRefGoogle Scholar
  24. Liu, S. S., Guo, C. L., Liang, X. J., Wu, F. J., & Dang, Z. (2016). Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicology and Environmental Safety, 129, 210–218.  https://doi.org/10.1016/j.ecoenv.2016.03.035.CrossRefGoogle Scholar
  25. Liu, S. S., Guo, C. L., Dang, Z., & Liang, X. J. (2017). Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicology and Environmental Safety, 137, 256–264.  https://doi.org/10.1016/j.ecoenv.2016.12.015.CrossRefGoogle Scholar
  26. Lu, J., Guo, C. L., Li, J., Zhang, H., Lu, G. N., Dang, Z., et al. (2013). A fusant of Sphingomonas sp. GY2B and Pseudomonas sp. GP3A with high capacity of degrading phenanthrene. World Journal of Microbiology and Biotechnology, 29(9), 1685–1694.  https://doi.org/10.1007/s11274-013-1331-3.CrossRefGoogle Scholar
  27. Mukherjee, A. K., Bhagowati, P., Biswa, B. B., Chanda, A., & Kalita, B. (2017). A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. Journal of Proteomics, 167, 25–35.  https://doi.org/10.1016/j.jprot.2017.07.020.CrossRefGoogle Scholar
  28. Ping, L. F., Zhang, C. R., Zhang, C. P., Zhu, Y. H., He, H. M., Wu, M., et al. (2014). Isolation and characterization of pyrene and benzo[a]pyrene-degrading Klebsiella pneumonia PL1 and its potential use in bioremediation. Applied Microbiology and Biotechnology, 98(8), 3819–3828.  https://doi.org/10.1007/s00253-013-5469-6.CrossRefGoogle Scholar
  29. Ping, L. F., Zhang, C. R., Cui, H., Yuan, X. L., Cui, J. T., & Shan, S. D. (2017). Characterization and application of a newly isolated pyrene-degrading bacterium, Pseudomonas monteilii. 3 Biotech, 7, 309.  https://doi.org/10.1007/S13205-017-0945-9.CrossRefGoogle Scholar
  30. Rehmann, K., Noll, H. P., Steinberg, C. E., & Kettrup, A. A. (1998). Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere, 36(14), 2977–2992.CrossRefGoogle Scholar
  31. Seo, J. S., Keum, Y. S., & Li, Q. X. (2009). Bacterial degradation of aromatic compounds. International Journal of Environmental Research and Public Health, 6(1), 278–309.  https://doi.org/10.3390/ijerph6010278.CrossRefGoogle Scholar
  32. Seo, J. S., Keum, Y. S., & Li, Q. X. (2011). Comparative protein and metabolite profiling revealed a metabolic network in response to multiple environmental contaminants in Mycobacterium aromativorans JS19b1(T). Journal of Agricultural and Food Chemistry, 59(7), 2876–2882.  https://doi.org/10.1021/jf103018s. CrossRefGoogle Scholar
  33. Smol, M., & Wlodarczyk-Makula, M. (2012). Effectiveness in the removal of polycyclic aromatic hydrocarbons from industrial wastewater by ultrafiltration technique. Archives of Environmental Protection, 38(4), 49–58.  https://doi.org/10.2478/v10265-012-0040-6.CrossRefGoogle Scholar
  34. Tao, X. Q., Lu, G. N., Dang, Z., Yang, C., & Yi, X. Y. (2007). A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry, 42(3), 401–408.  https://doi.org/10.1016/j.procbio.2006.09.018.CrossRefGoogle Scholar
  35. Tiwari, J. N., Reddy, M. M. K., Patel, D. K., Jain, S. K., Murthy, R. C., & Manickam, N. (2010). Isolation of pyrene degrading Achromobacter xylooxidans and characterization of metabolic product. World Journal of Microbiology and Biotechnology, 26(10), 1727–1733.  https://doi.org/10.1007/s11274-010-0350-6.CrossRefGoogle Scholar
  36. Vila, J., Lopez, Z., Sabate, J., Minguillon, C., Solanas, A. M., & Grifoll, M. (2001). Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: Actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 67(12), 5497–5505.  https://doi.org/10.1128/Aem.67.12.5497-5505.2001.CrossRefGoogle Scholar
  37. Wongwongsee, W., Chareanpat, P., & Pinyakong, O. (2013). Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Marine Pollution Bulletin, 74(1), 95–104.  https://doi.org/10.1016/Imarpolbu1.2013.07.025. CrossRefGoogle Scholar
  38. Yan, Z. S., Zhang, Y., Wu, H. F., Yang, M. Z., Zhang, H. C., Hao, Z. C., et al. (2017). Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Advances, 7(74), 46690–46698.  https://doi.org/10.1039/c7ra09274a.CrossRefGoogle Scholar
  39. Yuan, H. Y., Yao, J., Masakorala, K., Wang, F., Cai, M. M., & Yu, C. (2014). Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X. Environmental Science and Pollution Research, 21(4), 2724–2732.  https://doi.org/10.1007/s11356-013-2221-9.CrossRefGoogle Scholar
  40. Zeng, J., Zhu, Q. H., Wu, Y. C., Chen, H., & Lin, X. G. (2017). Characterization of a polycyclic aromatic ring-hydroxylation dioxygenase from Mycobacterium sp. NJS-P. Chemosphere, 185, 67–74.  https://doi.org/10.1016/j.chemosphere.2017.07.001.CrossRefGoogle Scholar
  41. Zhang, M., & Zhu, L. (2009). Sorption of polycyclic aromatic hydrocarbons to carbohydrates and lipids of ryegrass root and implications for a sorption prediction model. Environmental Science & Technology, 43(8), 2740–2745.  https://doi.org/10.1021/es802808q.CrossRefGoogle Scholar
  42. Zhang, W. H., Wei, C. H., Chai, X. S., He, J. Y., Cai, Y., Ren, M., et al. (2012). The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant. Chemosphere, 88(2), 174–182.  https://doi.org/10.1016/j.chemosphere.2012.02.076.CrossRefGoogle Scholar
  43. Zhang, J., Yang, J. C., Wang, R. Q., Hou, H., Du, X. M., Fan, S. K., et al. (2013). Effects of pollution sources and soil properties on distribution of polycyclic aromatic hydrocarbons and risk assessment. Science of the Total Environment, 463, 1–10.  https://doi.org/10.1016/j.scitotenv.2013.05.066.CrossRefGoogle Scholar
  44. Zhong, Y., Luan, T. G., Zhou, H. W., Lan, C. Y., & Tam, N. F. Y. (2006). Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium sp. Environmental Toxicology and Chemistry, 25(11), 2853–2859.  https://doi.org/10.1897/06-042r.1.CrossRefGoogle Scholar
  45. Zhou, H. Y., Wang, H., Huang, Y., & Fang, T. T. (2016). Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. International Biodeterioration & Biodegradation, 107, 62–69.  https://doi.org/10.1016/j.ibiod.2015.10.022.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fengji Wu
    • 1
  • Chuling Guo
    • 1
    • 2
    Email author
  • Shasha Liu
    • 3
  • Xujun Liang
    • 4
  • Guining Lu
    • 1
    • 2
  • Zhi Dang
    • 1
    • 2
  1. 1.School of Environment and EnergySouth China University of TechnologyGuangzhouChina
  2. 2.The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of EducationSouth China University of TechnologyGuangzhouChina
  3. 3.School of Environmental and Chemical EngineeringZhaoqing UniversityZhaoqingChina
  4. 4.Guangdong Key Laboratory of Environmental Pollution and Health, and School of EnvironmentJinan UniversityGuangzhouChina

Personalised recommendations