Advertisement

Acid-Generating Waste Rocks as Capillary Break Layers in Covers with Capillary Barrier Effects for Mine Site Reclamation

  • Chloé G. LarochelleEmail author
  • Bruno Bussière
  • Thomas Pabst
Article

Abstract

Tailings and waste rocks can be used to build covers with capillary barrier effects (CCBE) for the purposes of reclaiming acid-generating waste storage facilities while enhancing the value of the materials available on site. The efficiency of non-acid generating tailings, desulfurized tailings, and non-reactive waste rocks as cover materials was demonstrated in previous laboratory and field studies. However, acid-generating waste rocks are usually not considered for cover construction because of the risk of contamination. Nonetheless, using acid-generating waste rocks as the bottom capillary break layer in a CCBE could have economic and logistical benefits for companies, including helping to reduce the volume of waste rock piles and to valorize material that are generally considered to be problematic. In this study, laboratory column tests were performed to evaluate cover scenarios using acid-generating waste rocks from Westwood-Doyon mine (Québec, Canada). These waste rocks were placed under a moisture-retaining layer made of desulfurized tailings. A column test with non-acid-generating waste rocks was also performed for comparison purposes. Columns were submitted to eight wetting/drainage cycles. The performance of these systems was assessed by monitoring the volumetric water content in the different layers and by analyzing the water quality of the leachates. Significant reductions in contamination were observed when covers were added on the reactive waste rocks. These results suggest that it could be possible to valorize acid-generating waste rocks in cover systems.

Keywords

Covers with capillary barrier effects Kinetic testing Waste rocks Acid mine drainage Reclamation 

Notes

Acknowledgements

The authors thank the URSTM staff for their assistance with laboratory work, and the Westwood-Doyon mine staff for their support and for providing materials.

Funding Information

This study was funded by the NSERC-UQAT Industrial Chair on Mine Site Reclamation and by the Research Institute on Mines and Environment (RIME UQAT-Polytechnique; www.irme.ca). Additional financial support was from the industrial partners of RIME UQAT-Polytechnique.

References

  1. Aachib, M., Mbonimpa, M., & Aubertin, M. (2004). Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, Air, and Soil Pollution, 156(1), 163–193.  https://doi.org/10.1023/B:WATE.0000036803.84061.e5.CrossRefGoogle Scholar
  2. Aguilar, J., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martín, F., et al. (2004). Soil pollution by a pyrite mine spill in Spain: Evolution in time. Environmental Pollution, 132(3), 395–401.CrossRefGoogle Scholar
  3. ASTM (2007a). Standard test method for measurement of hydraulic conductivity of porous material using a Rigid-Wall, compaction-Mold Permeameter (ASTM D5856). ASTM International.Google Scholar
  4. ASTM (2007b). Standard test method for particle-size analysis of soils (ASTM D422). ASTM International.Google Scholar
  5. ASTM (2014). Standard test methods for specific gravity of soil solids by water pycnometer (ASTM D854). ASTM International.Google Scholar
  6. ASTM (2016). Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled Mirror hygrometer, or centrifuge. ASTM International.Google Scholar
  7. ASTM (2017). Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International.Google Scholar
  8. Aubertin, M., Chapuis, R. P., Aachib, M., Bussière, B., Ricard, J.-F., & Tremblay, L. (1995). Évaluation en laboratoire de barrières sèches construites à partir de rÉsidus miniers. MEND/NEDEM 2.22.2a.Google Scholar
  9. Aubertin, M., Bussière, B., Monzon, M., Joanes, A.-M., Gagnon, D., Barbera, J.-M., et al. (1999). Étude sur les barrières sèches construites à partir de rÉsidus miniers Phase II_Essais en place. MEND/NEDEM 2.22.2c.Google Scholar
  10. Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. P. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 40(6), 1104–1122.  https://doi.org/10.1139/t03-054.CrossRefGoogle Scholar
  11. Aubertin, M., Bussière, B., Pabst, T., James, M., & Mbonimpa, M. (2016). Review of reclamation techniques for acid generating mine wastes upon closure of disposal sites. Paper presented at the Geo-Chicago: Sustainability, Energy and the Geoenvironment, Chicago, August 14–18.Google Scholar
  12. Benzaazoua, M., Bussière, B., Kongolo, M., McLaughlin, J., & Marion, P. (2000). Environmental desulphurization of four Canadian mine tailings using froth flotation. International Journal of Mineral Processing, 60(1), 57–74.  https://doi.org/10.1016/S0301-7516(00)00006-5.
  13. Benzaazoua, M., Bussière, B., Dagenais, A. M., & Archambault, M. (2004). Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environmental Geology, 46(8), 1086–1101.  https://doi.org/10.1007/s00254-004-1113-1.CrossRefGoogle Scholar
  14. Benzaazoua, M., Bussière, B., Demers, I., Aubertin, M., Fried, É., & Blier, A. (2008). Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Minerals Engineering, 21(4), 330–340.  https://doi.org/10.1016/j.mineng.2007.11.012.
  15. Blowes, D. W., & Jambor, J. L. (1990). The pore-water geochemistry and the mineralogy of the cadose zone sulfide tailings, Waite Amulet, Quebec, Canada. Applied Geochemistry, 5.Google Scholar
  16. Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). 9.05 - the geochemistry of acid mine drainage A2 - Holland, Heinrich D. In K. K. Turekian (Ed.), Treatise on geochemistry (pp. 149–204). Oxford: Pergamon.CrossRefGoogle Scholar
  17. Boulanger-Martel, V. (2015). Performance d’une couverture avec effets de barrière capillaire faite de mélanges gravier-bentonite pour contrôler la migration d'oxygène en conditions nordiques. M.Sc.A, École Polytechnique de Montréal,Google Scholar
  18. Bouzahzah, H. (2013). Modification et amélioration des tests statiques et cinétiques pour une prédiction fiable du drainage minier acide. Ph.D., Université du Québec en Abitibi-Témiscamingue,Google Scholar
  19. Bouzahzah, H., Benzaazoua, M., & Bussière, B. (2010). A modified protocol of the ASTM normalized humidity cell test as laboratory weathering method of concentrator tailings. Paper presented at the international mine water association, mine water and innovative thinking, Sydney, NS, Canada,Google Scholar
  20. Bradham, W., & Caruccio, F. T. (1990). A comparative study of tailings analysis using acid/base accounting, cells, columns, and soxhlets. Paper presented at the mining and reclamation conference and exhibition, Charleston, WV, April.Google Scholar
  21. Bussière, B. (1999). Étude du comportement hydrique de couvertures avec effets de barrières capillaires inclinées à l'aide de modélisations physiques et numériques. Ph.D., École Polytechnique de Montréal,Google Scholar
  22. Bussière, B., Nicholson, R. V., Aubertin, M., & Servant, S. (1997). Effectiveness of covers built with desulphurized tailings: column tests investigation. Paper presented at the International Conference on Acid Rock Drainage, Vancouver.Google Scholar
  23. Bussière, B., Benzaazoua, M., Aubertin, M., & Mbonimpa, M. (2004). A laboratory study of covers made of low-sulphide tailings to prevent acid mine drainage. Environmental Geology, 45(5), 609–622.  https://doi.org/10.1007/s00254-003-0919-6.CrossRefGoogle Scholar
  24. Bussière, B., Maqsoud, A., Aubertin, M., Martschuk, J., McMullen, J., & Julien, M. (2006). Performance of the oxygen limiting cover at the LTA site, Malartic, Quebec (Vol. 1).Google Scholar
  25. Bussière, B., Aubertin, M., Mbonimpa, M., Molson, J. W., & Chapuis, R. P. (2007). Field experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty materials. Canadian Geotechnical Journal, 44(3), 245–265.  https://doi.org/10.1139/t06-120.CrossRefGoogle Scholar
  26. Chapuis, R., Masse, I., Madinier, B., & Aubertin, M. (2006). A drainage column test for determining unsaturated properties of coarse materials. Geotechnical Testing Journal, 30(2).Google Scholar
  27. Dagenais, A.-M., Aubertin, M., Bussière, B., Bernier, L., & Cyr, J. (2001). Monitoring at the Lorraine Mine Site: A Follow-Up on the Remediation Plan. Paper presented at the National Association of abandoned mine land programs annual conference, Athens, Ohio,Google Scholar
  28. Dagenais, A.M, Michel, A., Bussière, B., & Martin, V. (2005). Large scale applications of covers with capillary barrier effects to control the production of acid mine drainage.Google Scholar
  29. Demers, I. (2008). Performance d'une barrière à l'oxygène constituée de résidus miniers faiblement sulfureux pour contrôler la production de drainage minier acide. Ph.D., Université du Québec en Abitibi-Témiscamingue,Google Scholar
  30. Demers, I., Bussière, B., Benzaazoua, M., Mbonimpa, M., & Blier, A. (2008). Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Minerals Engineering, 21(4), 317–329.  https://doi.org/10.1016/j.mineng.2007.11.006.
  31. Demers, I., Bussière, B., Benzaazoua, M., Mbonimpa, M., & Blier, A. (2010). Preliminary optimization of a single-layer coer made of desulfurized tailings: Application to the Doyon mine tailings impoundment. Society of Mining, Metallurgy, and Exploration Annual Transactions, 326, 21–33.Google Scholar
  32. Éthier, M.-P. (2018). Évaluation de la performance d'un système de recouvrement monocouche avec nappe surélevée pour la restauration d'un parc à résidus miniers abandonné. Ph.D., Université du Québec en Abitibi-Témiscamingue,Google Scholar
  33. Fredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated soil mechanics in engineering practice.Google Scholar
  34. Gosselin, M., Aubertin, M., & Mbonimpa, M. (2007). Évaluation de l'effet du degré de saturation sur la consommation d'oxygène dans des résidus miniers sulfureux. Paper presented at the Geo Ottawa, Ottawa,Google Scholar
  35. Gray, N. F. (1997). Environmental impact and remediation of acid mine drainage: A management problem. Environmental Geology, 30(1), 62–71.CrossRefGoogle Scholar
  36. Han, Y.-S., Youm, S.-J., Oh, C., Cho, Y.-C., & Ahn, J. S. (2017). Geochemical and eco-toxicological characteristics of stream water and its sediments affected by acid mine drainage. CATENA, 148, 52–59.  https://doi.org/10.1016/j.catena.2015.11.015.
  37. Hernandez, A. M. (2007). Une étude expérimentale des propriétés hydriques des roches stériles et autres matériaux à grannulométrie étalée. M.Sc.A, École Polytechnique, Montréal,Google Scholar
  38. Jacobs, J. A., Lehr, J. H., & Testa, S. M. (2014). Acid mine drainage, rock drainage, and acid sulfate soils : Causes, assessment, prediction, prevention, and remediation. Somerset: John Wiley & Sons, Incorporated.CrossRefGoogle Scholar
  39. Kalonji Kabambi, A., Bussière, B., & Demers, I. (2017). Hydrogeological behaviour of covers with capillary barrier effects made of mining materials. Geotechnical and Geological Engineering, 35(3), 1199–1220.  https://doi.org/10.1007/s10706-017-0174-3.CrossRefGoogle Scholar
  40. Larochelle, C. G. (2018). Stérile miniers générateurs d'acide comme couche de bris capillaire dans une couverture avec effets de barrière capillaire M.Sc.A École Polytechnique de Montréal (in extension at Université du Québec en Abitibi-Témiscamingue), Montréal (Canada).Google Scholar
  41. Lessard, F. (2018). Évaluation de couverture isolantes avec effets de barrière capillaire faites de résidus désulfurés afin de contrôler le drainage miniers en conditions nordiques. M.Sc.A., École Polytechnique de Montréal (in extension at Université du Québec en Abitibi-Témiscamingue), Montréal (Canada).Google Scholar
  42. Maqsoud, A., Bussière, B., & Mbonimpa, M. (2009). Transient hydrogeological behaviour of the LTA cover with capillary barrier effects. Paper presented at the GeoHalifax, Halifax,Google Scholar
  43. Mbonimpa, M., Aubertin, M., Chapuis, R. P., & Bussière, B. (2002). Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotechnical & Geological Engineering, 20(3), 235–259.  https://doi.org/10.1023/A:1016046214724.CrossRefGoogle Scholar
  44. MEND. (2001). MEND MANUAL. MEND/NEDEM, 5(4), 2.Google Scholar
  45. MEND (2009). Report 1.20.1 Prediction manual for drainage chemistry from sulphidic geologic materials.Google Scholar
  46. Merkus, H. G. (2009). Particle size measurements: Fundamentals, Practice, Quality. Netherlands: Springer.Google Scholar
  47. Miller, S. D., Jeffery, J. J., & Wong, J. W. C. (1991). Use and misuse of the Acid-Base account for AMD prediction. Paper presented at the 2nd international conference, abatement of acidic drainage, Montreal, Canada,Google Scholar
  48. Morin, K. A., & Hutt, N. M. (2001). Environmental geochemistry of Minesite drainage: Practical theory and case studies. Vancouver: MDAG Pub.Google Scholar
  49. Nicholson, R., Gillham, R. W., Cherry, J. A., & Reardon, E. J. (1989). Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers (Vol. 26).Google Scholar
  50. Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 57, 3–16.  https://doi.org/10.1016/j.apgeochem.2015.02.008.CrossRefGoogle Scholar
  51. Pabst, T. (2011). Étude expérimentale et numérique du comportement hydro-géochimique de recouvrements placés sur des résidus sulfureux partiellement oxydés. Ph.D., École Polytechnique de Montréal,Google Scholar
  52. Pabst, T., Bussière, B., Aubertin, M., & Molson, J. (2018). Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: A numerical hydro-geochemical assessment. Journal of Contaminant Hydrology, 214, 39–53.  https://doi.org/10.1016/j.jconhyd.2018.05.006.CrossRefGoogle Scholar
  53. Peregoedova, A. (2012). Étude expérimentale des propriétés hydrogéologiques des roches stériles à une échelle intermédiaire de laboratoire. Ph.D., École Polytechnique de Montréal,Google Scholar
  54. Ricard, J.-F., Aubertin, M., McMullen, J., Pelletier, P., & Poirier, P. (1999). Performance of a dry cover made of tailings for the closure of les terrains Aurifères site, Malartic, Québec, Canada. Sudbury,Google Scholar
  55. Rimstidt, J. D., & Vaughan, D. J. (2003). Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 67(5), 873–880.  https://doi.org/10.1016/S0016-7037(02)01165-1.CrossRefGoogle Scholar
  56. Shock, C. C., & Wang, F.-X. (2011). Soil water tension, a powerful measurement for productivity and stewardship. HortScience, 46(3).Google Scholar
  57. Sracek, O., Choquette, M., Gélinas, P., Lefebvre, R., & Nicholson, R. V. (2004). Geochemical characterization of acid mine drainage from a waste rock pile, mine Doyon, Québec, Canada. Journal of Contaminant Hydrology, 69(1), 45–71.  https://doi.org/10.1016/S0169-7722(03)00150-5.CrossRefGoogle Scholar
  58. SRK (1989). Draft acid rock drainage technical guide volume 1. In M. a. P. R. Ministry of Energy (Ed.). British Columbia.Google Scholar
  59. Van Genuchten, M. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1 (Vol. 44).Google Scholar
  60. Van Genuchten, M., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying hydraulic functions of unsaturated soils.Google Scholar
  61. Vick, S. G. (1990). Planning, design, and analysis of tailings dams: BiTech.Google Scholar
  62. Wilson, G. W., Fredlund, D. G., & Barbour, S. L. (1997). The effect of soil suction on evaporative fluxes from soil surfaces. Canadian Geotechnical Journal, 34(1), 145–155.  https://doi.org/10.1139/t96-078.CrossRefGoogle Scholar
  63. Yanful, E. K. (1993). Oxygen diffusion through soil covers on sulphidic mine tailings. Journal of Geotechnical Engineering.  https://doi.org/10.1061/(ASCE)0733-9410(1993)119:8(1207.
  64. Yanful, E. K., Simms, P. H., & Payant, S. C. (1999). Soil covers for controlling acid generation in mine tailings: A laboratory evaluation of the physics and geochemistry. Water, Air, and Soil Pollution, 114(3), 347–375.  https://doi.org/10.1023/A:1005187613503.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chloé G. Larochelle
    • 1
    Email author
  • Bruno Bussière
    • 1
  • Thomas Pabst
    • 2
  1. 1.Research Institute on Mines and Environment (RIME) UQAT-PolytechniqueUniversité du Québec en Abitbi-Témiscamingue (UQAT)Rouyn-NorandaCanada
  2. 2.Department of Civil, Geological, and Mining Engineering, École Polytechnique de MontréalResearch Institute on Mines and Environment (RIME) UQAT-PolytechniqueMontréalCanada

Personalised recommendations