Modulating the Effect of Iron and Total Organic Carbon on the Efficiency of a Hydrogen Peroxide-Based Algaecide for Suppressing Cyanobacteria

  • Elizabeth A. Crafton
  • Teresa J. CutrightEmail author
  • West M. Bishop
  • Donald W. Ott


The intensity and frequency of cyanobacteria-dominated harmful algal blooms (cHABs) has been increasing. A key issue associated with cHABs is the potential to release cyanotoxins, such as microcystin. One of the primary methods for addressing cHABs in a reservoir is the application of algaecides. This research evaluated the impact of common environmental factors (i.e., Fe, total organic carbon) on the efficacy of a hydrogen peroxide-based algaecide to attain control of a targeted cyanobacterial population. The results found that sodium carbonate peroxydrate (SCP, trade name PAK®27) at half the manufacturer’s suggested application was effective at suppressing cyanobacteria for 2 weeks. For example, reactors that contained a full level of TOC and 1 mg/L Fe significantly decreased by 89% from 21,899 to 2437 ± 987 cells/mL (p < 0.05) by 2 days after treatment with half-dose SCP while reactors that contained the full-dose TOC and no SCP treatment depicted an increase in cyanobacteria population over the first week. Furthermore, as the cyanobacteria population decreased, the algal assemblage began to switch to being green algae dominant. Under the experimental conditions evaluated, Fe and total organic content did not interfere with the efficacy of SCP. SCP can provide effective control of cyanobacteria in a variety of environmental conditions.


Cyanobacteria Hydrogen peroxide Algaecide Iron 


Supplementary material

11270_2019_4112_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 12 kb)


  1. Al-Tebrineh, J., Pearson, L. A., Yasar, S. A., & Neilan, B. A. (2012). A multiplex qPCR targeting hepta- and neurotoxigenic cyanobacteria of global significance. Harmful Algae, 15, 19–25.CrossRefGoogle Scholar
  2. American Water Works Association (AWWA). (2010). Algae: Source to treatment, manual of water supply practices M57. First Edition. Denver, CO.Google Scholar
  3. Bandala, E. R., Martínez, D., Martínez, E., & Dionysiou, D. D. (2004). Degradation of microcystin-LR toxin by Fenton and photo-Fenton processes. Toxicon, 43(7), 829–832.CrossRefGoogle Scholar
  4. Barrington, D. J., Ghadouani, A., & Ivey, G. N. (2011). Environmental factors and the application of hydrogen peroxide for the removal of cyanobacteria from waste stabilization ponds. Journal of Environmental Engineering, 137(10), 952–960.CrossRefGoogle Scholar
  5. Barrington, D. J., Reichwaldt, E. S., & Ghadouani, A. (2013). The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecological Engineering, 50, 86–94.CrossRefGoogle Scholar
  6. Barroin, G., & Feuillade, M. (1986). Hydrogen peroxide as a potential algicide for Oscillatoria rubescens DC. Water Research, 20(5), 619–623.CrossRefGoogle Scholar
  7. Bauza, L., Aguilera, A., Echenique, R., Andrinolo, D., & Giannuzzi, L. (2014). Application of hydrogen peroxide to the control of eutrophic lake systems in laboratory assays. Toxins, 6, 2657–2675.CrossRefGoogle Scholar
  8. Burkholder, J. M., Gobler, C. J., O’Neill, J. M. (2018). Cyanobacteria, pp. 591–595. In: Harmful algal blooms and their management: A compendium desk reference, by Shumway SE, Burkholder JM, Morton SL (eds.). John Wiley & Sons Ltd., Hoboken.Google Scholar
  9. Burson, A., Matthijs, H. C. P., de Bruijne, W., Talens, R., Hoogenboom, R., Gerssen, A., et al. (2014). Termination of a toxic Alexandrium bloom with hydrogen peroxide. Harmful Algae, 31, 125–135.CrossRefGoogle Scholar
  10. Carmichael, W. W., & Boyer, G. L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54, 194–212.CrossRefGoogle Scholar
  11. Casamatta, D. A., & Wickstrom, C. E. (2000). Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa Kützing. Microbial Ecology, 40, 64–73.CrossRefGoogle Scholar
  12. Cooper, W. J., & Zepp, R. G. (1990). Hydrogen peroxide decay in waters with suspended soils: Evidence for biologically mediated processes. Canadian Journal of Fisheries and Aquatic Sciences, 47(5), 888–893.CrossRefGoogle Scholar
  13. Cornish, B. J. P. A., Lawton, L. A., & Robertson, P. K. J. (2000). Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Applied Catalysis B, Environmental, 25(1), 59–67.CrossRefGoogle Scholar
  14. Crafton, E. A. (Speaker), Gao, A. (Speaker), Zhang, L., Ott, D. W., Cutright, T. J. (2017). Evaluating effectiveness of three different algaecides for Lake Rockwell. Akron Global Water Alliance USA Water Conference, Akron OH, May 31- June 1.Google Scholar
  15. Crafton, E. A., Glowczewski, J., Ott, D. W., Cutright, T. J. (2018). Applications of algaecides for suppression of HABs: From bench to reservoir. Akron global water Alliance USA water conference, Akron OH, May 30-31.Google Scholar
  16. De Philippis, R., & Vicenzini, M. (1998). Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Reviews, 22, 151–175.CrossRefGoogle Scholar
  17. Drabkova, M., Matthijs, H. C. P., Admiraal, W., & Marsalek, B. (2007). Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica, 45(3), 363–369.CrossRefGoogle Scholar
  18. Fan, J., Ho, L., Hobson, P., Daly, R., Brookes, J. (2014). Application of various oxidants for cyanobacteria control and cyanotoxin removal in wastewater treatment. Journal of Environmental Engineering, 140(7), 04014022-1-04014022-8.Google Scholar
  19. Gao, Y., Cornwell, J. C., Stoecker, D. K., & Owens, M. S. (2012). Effects of cyanobacterial driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in shallow fresh water estuary. Biogeosciences, 9, 2697–2710.CrossRefGoogle Scholar
  20. Geer, T., Calomeni, A., Kinley, C., Iwinski, K., & Rodgers, J. H. (2017). Predicting in situ responses of taste- and odor-producing algae in a southeastern US reservoir to a sodium carbonate peroxyhydrate algaecide using a laboratory exposure-response model. Water, Air & Soil Pollution, 228(2), 1–14.CrossRefGoogle Scholar
  21. Greenfield, D. L., Duquette, A., Goodson, A., Keppler, C. J., Williams, S. H., Brock, L. M., et al. (2014). The effects of chemical algaecides on cell numbers and toxin content of the cyanobacteria Microcystis aeruginosa and Anabaenopsis sp. Environmental Management, 54, 1110–1120.CrossRefGoogle Scholar
  22. Hakkinen, P. J., Anesio, A. M., & Graneli, W. (2004). Hydrogen peroxide distribution, production, and decay in boreal lakes. Canadian Journal of Fisheries and Aquatic Sciences, 61(8), 1520–1527.CrossRefGoogle Scholar
  23. Hamilton, D. P., Wood, S. A., Dietrich, D. R., & Puddick, J. (2014). Costs of harmful blooms of freshwater cyanobacteria. In N. K. Sharma, A. K. Rai, & L. J. Stal (Eds.), Cyanobacteria: An economic perspective (pp. 245–256). Chichester: John Wiley & Sons ltd..Google Scholar
  24. Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. A., Cochlan, W. P., Dennison, W. C., et al. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8, 3–13.CrossRefGoogle Scholar
  25. Herrmann, R. (1996). The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environmental Toxicology and Chemistry, 15, 652–662.CrossRefGoogle Scholar
  26. Hoagland, P., Anderson, D. M., Kaoru, Y., & White, A. W. (2002). The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries, 25, 819–837.CrossRefGoogle Scholar
  27. Hyenstrand, P., Burkert, U., Pettersson, A., & Blomqvist, P. (2000). Competition between the green alga Scenedesmus and the cyanobacterium Synechococcus under different modes of inorganic nitrogen supply. Hydrobiologia, 435, 91–98.CrossRefGoogle Scholar
  28. Jarvie, H. P., Sharpley, A. N., Spears, B., Buda, A. R., May, L., & Kleinman, P. J. (2013). Water quality remediation faces unprecedented challenges from “legacy phosphorus.”. Environmental Science and Technology, 47, 8997–8998.CrossRefGoogle Scholar
  29. Kansole, M. M. R., & Lin, T. F. (2017). Impacts of hydrogen peroxide and copper sulfate on the control of Microcystis aeruginosa and MC-LR and the inhibition of MC-LR degrading bacterium Bacillus sp. Water, 9, 255–272.CrossRefGoogle Scholar
  30. Kranzler, C., Rudolf, M., Keren, N., & Schleiff, E. (2013). Chapter three—Iron in cyanobacteria. In Advances in botanical research, v. 65 (pp. 57–105). Amsterdam: Elsevier Ltd..Google Scholar
  31. Latifi, A., Jeanjean, R., Lemeille, S., Havaux, M., & Zhang, C. C. (2005). Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. Journal of Bacteriology, 187(18), 6596–6598.CrossRefGoogle Scholar
  32. Lawton, L. A., & Robertson, P. K. J. (1999). Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews, 28(4), 217–224.CrossRefGoogle Scholar
  33. Liu, I., Lawton, L. A., & Robertson, P. K. J. (2003). Mechanistic studies of the photocatalytic oxidation of microcystin-LR: An investigation of byproducts of the decomposition process. Environmental Science and Technology, 37(14), 3214–3219.CrossRefGoogle Scholar
  34. Lopez-Gomollon, S., Hernandez, J. A., Pellicer, S., Angarica, V. E., Peleato, M. L., & Fillat, M. F. (2007). Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: Identification of overlapping genes in FurA and NtcA reulons. Journal Molecular Biology, 374, 267–281.CrossRefGoogle Scholar
  35. Lürling, M., Meng, D., & Faassen, E. J. (2014). Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in the cyanobacterium, Microcystis aeruginosa. Toxins (Basel), 6, 3260–3280.CrossRefGoogle Scholar
  36. Matthijs, H. C., Visser, P. M., Reeze, B., Meeuse, J., Slot, P. C., Wijn, G., et al. (2012). Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research, 46, 1460–1472.CrossRefGoogle Scholar
  37. Matthjis, H. C. P., Jancula, D., Visser, P. M., & Marsalek, B. (2016). Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquatic Ecology, 50(3), 443–460.CrossRefGoogle Scholar
  38. Merel, F. M. M., Rueter, J. G., & Price, N. M. (1991). Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with high nutrient and low biomass. Oceanography, 4(2), 56–61.CrossRefGoogle Scholar
  39. Moffett, J. W., & Zafiriou, O. C. (1993). The photochemical decomposition of hydrogen-peroxide in surface waters of the Eastern Caribbean and Orinoco River. Journal of Geophysical Research: Oceans, 98, 2307–2313.CrossRefGoogle Scholar
  40. Montgomery, D. (2013). Design and analysis of experiments, 8 th edition. New York: Wiley and Sons.Google Scholar
  41. Nagai, T., Imai, A., Matsushige, K., & Fukushia, T. (2007). Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation. Limnology, 8, 261–270.CrossRefGoogle Scholar
  42. Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju, an expanding, highly adaptive cyanobacterium: Worldwide distribution and review of its ecology. Archiv für Hydrobiologie, 107(4), 563–593.Google Scholar
  43. Paerl, H. W., Fulton, R. S., III, Moiander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms, with emphasis on cyanobacteria. The Scientific World, 1, 76–113.CrossRefGoogle Scholar
  44. Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J. J., Newell, S. E., et al. (2016). Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae, 54, 213–222.CrossRefGoogle Scholar
  45. Passardi, F., Zamocky, M., Favet, J., Jakopitsch, C., Penel, C., Obinger, C., & Dunand, C. (2007). Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos? Gene, 397(1–2), 101–113.CrossRefGoogle Scholar
  46. Pyo, D., & Yoo, J. (2008). Degradation of cyanobacterial toxin, microcystin LR, using chemical oxidants. Journal of Immunoassay and Immunochemistry, 29(3), 211–219.CrossRefGoogle Scholar
  47. Qian, H., Yu, S., Sun, Z., Xie, X., Liu, W., & Fu, Z. (2010). Effects of copper sulfate, hydrogen peroxide and N-pehnyl-2-naphthylamine on oxidative stress and the gene expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquatic Toxicology, 99, 405–412.CrossRefGoogle Scholar
  48. Reichwaldt, E. S., Zheng, L., Barrington, D. J., & Ghadouani, A. (2012). Acute toxicological response of Daphnia and Moina to hydrogen peroxide. Journal of Environmental Engineering, 138, 607–611.CrossRefGoogle Scholar
  49. SePro. (2015). PAK 27 algaecide safety data sheet. Carmel: SePRO Corporation.Google Scholar
  50. Sinha, A. K., Eggleton, M. A., & Lochmann, R. T. (2018). An environmentally friendly approach for mitigating cyanobacteria bloom and their toxins in hypereutrophic ponds: Potentiality of a newly developed granular hydrogen peroxide-based compound. Science Total Environment, 637-638, 524–537.CrossRefGoogle Scholar
  51. Søndergaard, M., Jensen, P. J., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506-509, 135–145.CrossRefGoogle Scholar
  52. Song, W., De La Cruz, A., Rein, K., & O’Shea, K. (2006). Ultrasonically induced degradation of microcystin-LR and -RR: Identification of products, effect of pH, formation and destruction of peroxides. Environmental Science & Technology, 40, 3941–3946.CrossRefGoogle Scholar
  53. Song, W. H., Bardowell, S., & O'Shea, K. E. (2007). Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins). Environmental Science & Technology, 41, 5336–5341.CrossRefGoogle Scholar
  54. Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M. F., Suzuki, S., Nakazawa, H., et al. (1995). Stability of microcystins from cyanobacteria. 2. Effect of UV light on decomposition and isomerization. Toxicon, 33(12), 1619–1631.CrossRefGoogle Scholar
  55. Vuorio, K., Lagus, A., Lehtimaki, J. M., Suomela, J., & Helminen, H. (2005). Phytoplankton community responses to nutrient and iron enrichment under different nitrogen to phosphorous ratios in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology, 322, 39–52.CrossRefGoogle Scholar
  56. Wang, J., Chen, Z., Chen, H., & Wen, Y. (2018). Effect of hydrogen peroxide on Microcystis aeruginosa: Role of cytochromes P450. Science of the Total Environment, 626, 211–218.CrossRefGoogle Scholar
  57. Weenink, E. F. J., Luimstra, V. M., Schuurmans, J. M., Van Herk, M. J., Visser, P. M., & Matthijs, H. C. P. (2015). Combatting cyanobacteria with hydrogen peroxide: A laboratory study on the consequences for phytoplankton community and diversity. Frontiers in Microbiology, 6, 714.CrossRefGoogle Scholar
  58. Welker, M., & Steinberg, C. (1999). Indirect photolysis of cyanotoxins: One possible mechanism for their low persistence. Water Research, 33(5), 1159–1164.CrossRefGoogle Scholar
  59. Welker, M., & Steinberg, C. (2000). Rates of humic substance photosensitized degradation of microcystin-LR in natural waters. Environmental Science & Technology, 34(16), 3415–3419.CrossRefGoogle Scholar
  60. Wilson, C. L., Hinman, N. W., & Sheridan, R. P. (2000). Hydrogen peroxide formation and decay in iron-rich geothermal waters: The relative roles of abiotic and biotic mechanisms. Photochemistry and Photobiology, 71(6), 691–699.CrossRefGoogle Scholar
  61. Yang, Z., Buey, R. P., Fernandez-Figueroa, E. G., Barros, M. U. G., Rajendran, S., & Wilson, A. E. (2018). Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. Environmental Pollution, 240, 590–598.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elizabeth A. Crafton
    • 1
  • Teresa J. Cutright
    • 1
    Email author
  • West M. Bishop
    • 2
  • Donald W. Ott
    • 3
  1. 1.Department of Civil EngineeringThe University of AkronAkronUSA
  2. 2.SePRO Research and Technology CampusWhitakersUSA
  3. 3.Department of BiologyThe University of AkronAkronUSA

Personalised recommendations