Presence of Pesticides and Toxicity Assessment of Agricultural Soils in the Quintana Roo Mayan Zone, Mexico Using Biomarkers in Earthworms (Eisenia fetida)

  • Moises Andrade-Herrera
  • Griselda Escalona-Segura
  • Mauricio González-Jáuregui
  • Rafael A. Reyna-Hurtado
  • Jorge A. Vargas-Contreras
  • Jaime Rendón-von OstenEmail author


Agriculture intensification and the use of pesticides have led to biodiversity loss due to soil toxic compounds. Thus, soil contamination studies are important to understand the negative effects in the physicochemical interactions. The use of biomarkers through bioindicators is a useful tool for assessing toxicity in agricultural environments complemented with the determination of pesticides. The objectives of this study were to determine the presence of organochlorine (OCPs) and organophosphate (OPPs) pesticides and the soil’s potential toxicity in agricultural fields with different crops from the center of Quintana Roo State, using a set of enzymatic biomarkers (BMs), such as acetylcholinesterase (AChE), glutathione-S-Transferase (GST), and catalase (CAT) on earthworms (Eisenia fetida). Earthworms were exposed for 96 h on nine different agricultural soils as well as on a reference soil from a conservation area. Within all samples of soils, only OCPs were detected in low concentrations (ranged from non-detected to 1.40 ppm). However, no correlation was observed between these pesticides and the BMs activity. AChE and CAT activity was significantly inhibited in at least one agricultural soil if compared to the conservation area, while no significant differences of GST were observed. The AChE activity observed suggests the presence of anticholinergic substances (that were neither detected nor determined analytically) in the sampled soils. The characterization of oxidative stress BMs was not correlated with the OCPs analyzed. Our results demonstrate that further studies of toxicity under field conditions are required, given the complexity of environmental conditions outside the laboratory.


Earthworms Soil toxicity Eisenia fetida Organochlorine pesticides Biomarkers 



The authors are grateful to the farmers who kindly allowed to collect the soil samples from their plots, as well as share information on their agricultural practices. Particularly, Fausto Pacheco for his support and collaboration. Also, to M.C. Wilbert Evan Martinez for his contribution in the translation of the manuscript. Finally, to CONACYT which provided the doctoral scholarship for the realization of this study.


  1. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.CrossRefGoogle Scholar
  2. Aiyesanmi, A. F., & Idowu, G. A. (2012). Organochlorine pesticides residues in soil of cocoa farms in Ondo tate Central District, Nigeria. Environment and Natural Resources Research, 2, 65–73.CrossRefGoogle Scholar
  3. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464.CrossRefGoogle Scholar
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  5. Cantu-Soto, E. U., Meza-Montenegro, M. M., Valenzuela-Quintanar, A. I., Félix-Fuentes, A., Grajeda-Cota, P., Balderas-Cortes, J. J., Osorio-Rosas, C. L., Acuña-García, G., & Aguilar-Apodaca, M. G. (2011). Residues of organochlorine pesticides in soils from the southern Sonora, Mexico. Bulletin of Environmental Contamination and Toxicology, 87, 556–560.CrossRefGoogle Scholar
  6. Chakra Reddy, N., & Venkateswara Rao, J. (2008). Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology and Environmental Safety, 71, 574–582.CrossRefGoogle Scholar
  7. COFEPRIS. (2017). Catálogo de Plaguicidas. Comisión Federal para la Protección de Riesgos Sanitarios. Accessed 30 March 2017.
  8. Du, L., Li, G., Liu, M., Li, Y., Yin, S., & Zhao, J. (2015). Biomarker responses in earthworms (Eisenia fetida) to soils contaminated with di-n-butyl phthalates. Environmental Science and Pollution Research, 22, 4660–4669.CrossRefGoogle Scholar
  9. Ellman, G. L., Courtney, K. D., Andres, V. J., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetilcholinesterase activity. Biochemical Pharmacology 7(2), 88–95.
  10. EPA. (1990). Resource conservation and recovery act 55 FR 30789.27. Environmental Protection Agency EUA.Google Scholar
  11. FAO. (2006). Código Internacional de Conducta para la Distribución y Utilización de Plaguicidas [WWW Document]. Accessed 22 Feb 2017.
  12. FAO. (2017a). Organización de las Naciones Unidas para la Agricultura y la Alimentación [WWW Document]. FAOSTAT, uso de plaguicidas. Accessed 22 Feb 2017.
  13. FAO. (2017b). Conservation of natural resources for sustainable agriculture [WWW document]. Training modules - land and water digital media series 27Rev.1. URL Accessed 23 Feb 2017.
  14. Feng, L., Zhang, L., Zhang, Y., Zhang, P., & Jiang, H. (2015). Inhibition and recovery of biomarkers of earthworm Eisenia fetida after exposure to thiacloprid. Environmental Science and Pollution Research, 22, 9475–9482.CrossRefGoogle Scholar
  15. Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1994). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44, 249–253.Google Scholar
  16. Givaudan, N., Binet, F., Le Bot, B., & Wiegand, C. (2014). Earthworm tolerance to residual agricultural pesticide contamination : Field and experimental assessment of detoxification capabilities. Environmental Pollution, 192, 9–18.CrossRefGoogle Scholar
  17. Guilhermino, L., Lopes, M. C., Carvalho, A. P., & Soared, A. M. V. M. (1996). Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia Magna. Chemosphere, 32, 727–738.CrossRefGoogle Scholar
  18. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249, 7130–7139.Google Scholar
  19. Hackenberger, B. K., Jaric-Perkusik, D., & Stepic, S. (2008). Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae). Ecotoxicology and Environmental Safety, 71, 583–589.CrossRefGoogle Scholar
  20. Hans, R. K., Khan, M. A., Farooq, M., & Beg, M. U. (1993). Glutathione-S-transferase activity in an earthworm (Pheretima posthuma) exposed to three insecticides. Soil Biology and Biochemistry, 25, 509–511.CrossRefGoogle Scholar
  21. Harner, T., Wideman, J. L., Jantunen, L. M. M., Bidleman, T. F., & Parkhurst, W. J. (1999). Residues of organochlorine pesticides in Alabama soils. Environmental Pollution, 106, 323–332.CrossRefGoogle Scholar
  22. Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122, 113–130.
  23. Jordaan, M. S., Reinecke, S. A., & Reinecke, A. J. (2012). Acute and sublethal effects of sequential exposure to the pesticide azinphos-methyl on juvenile earthworms (Eisenia andrei). Ecotoxicology, 21, 649–661.CrossRefGoogle Scholar
  24. Leal Soto, D. S., Valenzuela Quintanar, A. I., Gutiérrez Coronado, M. d. L., Bermúdez Almada, M. d. C., Hernández García, J., Aldana Madrid, M. L., Grajeda Cota, P., Silveira Gramont, M. I., Meza Montenegro, M. M., Palma Durán, S. A., Leyva García, G. N., Camarena Gómez, B. O., & Valenzuela Navarro, C. P. (2014). Organochlorine Pesticide Residues in Agricultural Soils. Terra Latinoamericana, 32, 1–11.Google Scholar
  25. Limón-Pacheco, J., & Gonsebatt, M. E. (2009). The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 674, 137–147.CrossRefGoogle Scholar
  26. Lopaka, L. (2013).NADA: Nondetects and data analysis for environmental data. R package version 1.5-6. URL Accessed 20 Jan 2017.
  27. Lorenzo-Flores, A., Giácoman Vallejos, G., Ponce Caballero, M. d. C., & Ghoveisi, H. (2017). Adsorption of organophosphorus pesticides in tropical soils: the case of karst landscape of northwestern Yucatan. Chemosphere, 166, 292–299.CrossRefGoogle Scholar
  28. Martínez-Salinas, R. I., Díaz-Barriga, F., Batres-Esquivel, L. E., & Pérez-Maldonado, I. N. (2011). Assessment of the levels of DDT and its metabolites in soil and dust samples from Chiapas, Mexico. Bulletin of Environmental Contamination and Toxicology, 86, 33–37.CrossRefGoogle Scholar
  29. Metcalfe, C. D., Beddows, P. A., Gold Bouchot, G., Metcalfe, T. L., Li, H., & Lavieren, H. V. (2011). Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan peninsula, Mexico. Environmental Pollution, 159, 991–997.CrossRefGoogle Scholar
  30. Mínguez-Alarcón, L., Mendiola, J., Torres-Cantero, A.M. (2014). Pesticides and heavy metal toxicity. In: Male infertility. pp 181–192.Google Scholar
  31. Nam, T.-H., Kim, L., Jeon, H.-J., Kim, K., Ok, Y.-S., Choi, S.-D., & Lee, S.-E. (2017). Biomarkers indicate mixture toxicities of fluorene and phenanthrene with endosulfan toward earthworm (Eisenia fetida). Environmental Geochemistry and Health, 39, 307–317.CrossRefGoogle Scholar
  32. Nawab, A., Aleem, A., & Malik, A. (2003). Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresource Technology, 88, 41–46.CrossRefGoogle Scholar
  33. NOM-021-RECNAT (2000). NOM-021-RECNAT, DIARIO OFICIAL DE LA FEDERACIÓN. México.Google Scholar
  34. O’Halloran, K. (2006). Toxicological considerations of contaminants in the terrestrial environment for ecological risk assessment. Human and Ecological Risk Assessment: An International Journal, 12, 74–83.CrossRefGoogle Scholar
  35. OECD (1984). Test No. 207: Earthworm, Acute Toxicity Tests, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing.
  36. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, B.R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., & Wagner, H. (2017). Vegan: Community Ecology Package.Google Scholar
  37. Olvera-Velona, A., Capowiez, Y., Mascle, O., Ortiz-Hernandez, L., & Benoit, P. (2008). Assessment of the toxicity of ethyl-parathion to earthworms (Aporrectodea caliginosa) using behavioural, physiological and biochemical markers. Applied Soil Ecology, 40, 476–483.CrossRefGoogle Scholar
  38. Ortíz, I., Avila-chávez, M. A., & Torres, L. G. (2014). Plaguicidas en México : usos, riesgos y marco regulatorio. Revista latinoamericana de Biotecnología Ambiental y Algal, 4, 26–46.Google Scholar
  39. Paoletti, M. G. (1999). Using bioindicators based on biodiversity to assess landscape sustainability. Agriculture, Ecosystems and Environment, 74, 1–18.CrossRefGoogle Scholar
  40. Peakall, D. B. (1994). The role of biomarkers in environmental assessment (1). Introduction. Ecotoxicology, 3, 157–160.CrossRefGoogle Scholar
  41. Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., & Vandenbulcke, F. (2014). Pesticides and earthworms. A review. Agronomy for Sustainable Development, 34, 199–228.CrossRefGoogle Scholar
  42. R Core Team. (2016). R: a language and environment for statistical computing [WWW document]. Vienna, Austria: R Foundation for Statistical Computing URL Scholar
  43. Rault, M., Collange, B., Mazzia, C., & Capowiez, Y. (2008). Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion. Soil Biology and Biochemistry, 40, 3086–3091.CrossRefGoogle Scholar
  44. Restrepo, I. (1988). Naturaleza muerta los plaguicidas en Mexico.pdf. Ciencias, 13, 40–50.Google Scholar
  45. Rodríguez Polanco, A. G., Navarro, J. A. A., Sánchez Solorio, J., Mena Rejón, G. J., Marrufo Gómez, J., & Del Valis Casillas, T. A. (2015). Contamination by organochlorine pesticides in the aquifer of the ring of cenotes in Yucatán, México. Water Environment Journal, 29, 140–150.CrossRefGoogle Scholar
  46. Rodríguez-Castellanos, L., & Sanchez-Hernandez, J. C. (2007). Earthworm biomarkers of pesticide contamination: Current status and perspectives. Journal of Pesticide Science, 32, 360–371.CrossRefGoogle Scholar
  47. SAGARPA (2015). Avance de siembras y cosechas por cultivo [WWW Document]. Servicio de Información Agroalimentaria y Pesquera, SIAP. Accessed 7 May 2017.
  48. Sánchez-Osorio, J. L., Macías-Zamora, J. V., Ramírez-Álvarez, N., & Bidleman, T. F. (2017). Organochlorine pesticides in residential soils and sediments within two main agricultural areas of northwest Mexico: Concentrations, enantiomer compositions and potential sources. Chemosphere, 173, 275–287.CrossRefGoogle Scholar
  49. Schreck, E., Geret, F., Gontier, L., & Treilhou, M. (2008). Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa nocturna. Chemosphere, 71, 1832–1839.CrossRefGoogle Scholar
  50. Schreck, E., Gontier, L., Dumat, C., & Geret, F. (2012). Ecological and physiological effects of soil management practices on earthworm communities in French vineyards. European Journal of Soil Biology, 52, 8–15.CrossRefGoogle Scholar
  51. Shugart, L. R., McCarthy, J. F., & Halbrook, R. S. (1992). Biological markers of environmental and ecological contamination: an overview. Risk Analysis, 12, 353–360.CrossRefGoogle Scholar
  52. Stepić, S., Hackenberger, B. K., Velki, M., Hackenberger, D. K., & Lončarić, Ž. (2013). Potentiation effect of metolachlor on toxicity of organochlorine and organophosphate insecticides in earthworm Eisenia andrei. Bulletin of Environmental Contamination and Toxicology, 91, 55–61.CrossRefGoogle Scholar
  53. Stepíc, S., Hackenberger, B. K., Velki, M., Loncaric, Z., & Hackenberger, D. K. (2013). Effects of individual and binary-combined commercial insecticides endosulfan, temephos, malathion and pirimiphos-methyl on biomarker responses in earthworm Eisenia andrei. Environmental Toxicology and Pharmacology, 6, 715–723.CrossRefGoogle Scholar
  54. Torres Romero, T. (2007). Informe Final del Proyecto Integración del Diagnóstico Nacional sobre la Gestión de Compuestos Orgánicos Persistentes en México.Google Scholar
  55. van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment : a review. Environmental Toxicology and Pharmacology, 13, 57–149.CrossRefGoogle Scholar
  56. Velki, M., & Hackenberger, B. K. (2013a). Inhibition and recovery of molecular biomarkers of earthworm Eisenia andrei after exposure to organophosphate dimethoate. Soil Biology and Biochemistry, 57, 100–108.CrossRefGoogle Scholar
  57. Velki, M., & Hackenberger, B. K. (2013b). Biomarker responses in earthworm Eisenia andrei exposed to pirimiphos-methyl and deltamethrin using different toxicity tests. Chemosphere, 90, 1216–1226.CrossRefGoogle Scholar
  58. Warnes, G.R., Bolker, B., Lumley, T., & Johnson, R.C. (2005). Various R programming tools for model fitting, intramural research program, of the NIH, National Cancer Institute, Center for Cancer Research. R package.Google Scholar
  59. Xiao, N., Jing, B., Ge F., & Liu X. (2006). The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere, 62, 1366–1373.
  60. Yang, X., Song, Y., Kai, J., & Cao, X. (2012). Enzymatic biomarkers of earthworms Eisenia fetida in response to individual and combined cadmium and pyrene. Ecotoxicology and Environmental Safety, 86, 162–167.CrossRefGoogle Scholar
  61. Zhang, Q., Zhang, B., & Wang, C. (2014). Ecotoxicological effects on the earthworm Eisenia fetida following exposure to soil contaminated with imidacloprid. Environmental Science and Pollution Research, 21, 12345–12353.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Moises Andrade-Herrera
    • 1
  • Griselda Escalona-Segura
    • 1
  • Mauricio González-Jáuregui
    • 2
  • Rafael A. Reyna-Hurtado
    • 1
  • Jorge A. Vargas-Contreras
    • 3
  • Jaime Rendón-von Osten
    • 4
    Email author
  1. 1.El Colegio de la Frontera SurUnidad CampecheLerma, San Francisco de CampecheMexico
  2. 2.Instituto de EcologíaCarretera antigua a Coatepec 351VeracruzMexico
  3. 3.Facultad de Ciencias Químico BiológicasUniversidad Autónoma de CampecheSan Francisco de CampecheMexico
  4. 4.Instituto EPOMEXUniversidad Autónoma de CampecheCampecheMexico

Personalised recommendations