Advertisement

Metal Release under Anaerobic Conditions of Urban Soils of Four European Cities

  • F. Ajmone-Marsan
  • Elio PadoanEmail author
  • F. Madrid
  • B. Vrščaj
  • M. Biasioli
  • C. M. Davidson
Article
  • 27 Downloads

Abstract

Urban soil contamination may represent an environmental threat in view of their proximity to humans. The ecological homogenization of urban areas has been postulated, and as the sources of pollution are the same in most European cities, it is possible that soil contamination is another factor of convergence. The current climate change with consequent increase of extreme rain events may affect the mobility of potentially toxic elements (PTE) thus increasing the risks. If the soil is submerged, Eh decreases and causes the solubilization of Fe and Mn oxides, which are important carriers of PTE. We compared the release of Cu, Pb, and Zn from 48 soils of four cities (namely Glasgow, Ljubljana, Sevilla, and Torino) when submerged for up to 30 days. A decrease of the redox potential was observed in all soils after a few days and an increase of Mn and then Fe in solution. Cu, Pb, and Zn were consequently released to the solution according to the general soil contamination. Despite the marked differences in soil properties, the reaction to anaerobiosis appeared to be similar in all samples indicating that waterlogging of urban soil contaminated with PTE may pose a serious environmental risk and substantiating the hypothesis of ecological convergence.

Keywords

Urban soils Climate change Potentially toxic elements Redox Flooding 

Notes

Acknowledgements

We are indebted to Luis Madrid, formerly at the Instituto de Recursos Naturales y Agrobiología of Sevilla (CSIC), Spain, for his guidance and advice. M. Biasioli is grateful to the Department of Pure and Applied Chemistry, University of Strathclyde and the Instituto de Recursos Naturales y Agrobiología of Sevilla (CSIC), Spain, where part of this research was carried out.

Funding information

This work was conducted with the financial support of the European Commission, URBSOIL project, under contract EVK4-CT-2001-00053.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11270_2019_4101_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1055 kb)

References

  1. Ajmone-Marsan, F., Biasioli, M., Kralj, T., Grčman, H., Davidson, C. M., Hursthouse, A. S., Madrid, L., & Rodrigues, S. (2008). Metals in particle-size fractions of the soils of five European cities. Environmental Pollution, 152, 73–81.  https://doi.org/10.1016/j.envpol.2007.05.020.CrossRefGoogle Scholar
  2. Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soils of urban areas. Water, Air, and Soil Pollution, 213, 121–143.CrossRefGoogle Scholar
  3. Alderman, K., Turner, L. R., & Tong, S. (2012). Floods and human health: a systematic review. Environment International, 47, 37–47.CrossRefGoogle Scholar
  4. Balint, R., Nechifor, G., & Ajmone-Marsan, F. (2014). Leaching potential of metallic elements from contaminated soils under anoxia. Environmental Science: Processes & Impacts, 16, 211–219.Google Scholar
  5. Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. The Science of the Total Environment, 356, 154–164.CrossRefGoogle Scholar
  6. Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: a comparison of three European cities. Journal of Environmental Quality, 36, 70–79.CrossRefGoogle Scholar
  7. Biasioli, M., Kirby, J. K., Hettiarachi, G. M., Ajmone-Marsan, F., & McLaughlin, M. J. (2010). Copper lability in soils subjected to intermittent submergence. Journal of Environmental Quality, 39, 2047–2053.CrossRefGoogle Scholar
  8. Borch, T., Kretzschmar, R., Kappler, A., Van Cappellen, P., Ginder-Vogel, M., Voegelin, A., & Campbell, K. (2010). Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology, 44, 15–23.CrossRefGoogle Scholar
  9. Buzatu, S. (2016). Cities: surviving floods and significant whims of the weather. http://www.youris.com/Environment/Methodology/Cities-Surviving-Floods-And-Significant-Whims-Of-The-Weather.kl
  10. Ciampittiello, M., Dresti, C., Saidi, H. (2013). Analisi climatica degli eventi pluviometrici estremi. In S.Barbero (Ed.), Le precipitazioni intense in Piemonte. Distribuzione regionale delle piogge e caratterizzazione statistica dei valori estremi (pp. 7-22). Torino, Italy: ARPA Piemonte. [in Italian].Google Scholar
  11. Contin, M., Mondini, C., Leita, L., & De Nobili, M. (2007). Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma, 140, 164–175.CrossRefGoogle Scholar
  12. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences, and uses (2nd ed.). Weinheim: Wiley-VCH GmbH.CrossRefGoogle Scholar
  13. Cornu, S., Cattle, J. A., Samouëlian, A., Laveuf, C., Guilherme, L. R. G., & Alberic, P. (2009). Impact of redox cycles on manganese, iron, cobalt, and lead in nodules. Soil Science Society of America Journal, 73, 1231–1241.CrossRefGoogle Scholar
  14. Davranche, M., & Bollinger, J. C. (2000). Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: effect of reductive conditions. Journal of Colloid and Interface Science, 227, 531–539.CrossRefGoogle Scholar
  15. Donner, E., McLaughlin, M. J., Hodson, M. E., Heemsbergen, D., Warne, M. S. J., Nortcliff, S., & Broos, K. (2012). Ageing of zinc in highly-weathered iron-rich soils. Plant and Soil, 361, 83–95.CrossRefGoogle Scholar
  16. Du, S. Q., Shi, P. J., Van Rompaey, A., & Wen, J. H. (2015). Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Natural Hazards, 76, 1457–1471.  https://doi.org/10.1007/s11069-014-1463-2.CrossRefGoogle Scholar
  17. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407, 3972–3985.CrossRefGoogle Scholar
  18. Florido, M. C., Madrid, F., & Ajmone-Marsan, F. (2011). Variations of metal availability and bio-accessibility in water-logged soils with various metal contents: in vitro experiments. Water, Air, and Soil Pollution, 217, 149–156.CrossRefGoogle Scholar
  19. Fox, M., Chari, R., Resnick, B., & Burke, T. (2009). Potential for chemical mixture exposures and health risks in New Orleans post-hurricane Katrina. Human and Ecological Risk Assessment: An International Journal, 15, 831–845.CrossRefGoogle Scholar
  20. Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper river, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination: An International Journal, 23, 779–799.CrossRefGoogle Scholar
  21. Furman, O., Strawn, D. G., & McGeehan, S. (2007). Sample drying effects on lead bioaccessibility in reduced soil. Journal of Environmental Quality, 36, 899–903.CrossRefGoogle Scholar
  22. Gallant, A. J. E., Karoly, D. J., & Gleason, K. L. (2014). Consistent trends in a modified climate extremes index in the United States, Europe, and Australia. Journal of Climate, X, 1379–1394.CrossRefGoogle Scholar
  23. Gasparatos, D. (2013). Sequestration of heavy metals from soil with Fe–Mn concretions and nodules. Environmental Chemistry Letters, 11, 1–9.CrossRefGoogle Scholar
  24. Groffman, P. M., Cavender-Bares, J., Bettez, N. D., Grove, J. M., Hall, S. J., Heffernan, J. B., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K., O'Neil-Dunne, J., Ogden, L., Pataki, D. E., Polsky, C., Chowdhury, R. R., & Steele, M. K. (2014). Ecological homogenization of urban USA. Frontiers in Ecology and the Environment, 12, 74–81.CrossRefGoogle Scholar
  25. Grybos, M., Davranche, M., Gruau, G., & Petitjean, P. (2007). Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Journal of Colloid and Interface Science, 314, 490–501.CrossRefGoogle Scholar
  26. Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.CrossRefGoogle Scholar
  27. IPCC – Intergovernamental panel on climate change. (2013). Climate change 2013: the physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  28. ISO - International Standards Organisation. (2006). Soil quality - Pretreatment of samples for physico-chemical analysis (ISO 11464:2006). Retrieved from https://www.iso.org/standard/37718.html. Accessed May 02 2018
  29. ISO - International Standards Organisation. (1995). Soil quality - Extraction of trace elements soluble in aqua regia (ISO 11466:1995). Retrieved from https://www.iso.org/standard/19418.html Accessed May 02 2018
  30. Jha, A. K., Bloch, R., & Lamond, J. (2011). Cities and flooding. A guide to integrated urban flood risk management for the 21st century. Washington, D.C.: The World Bank.Google Scholar
  31. Jones, M. R., Blenkinsop, S., Fowler, H. J., & Kilsby, C. G. (2014). Objective classification of extreme rainfall regions for the UK and updated estimates of trends in regional extreme rainfall. International Journal of Climatology, 34, 751–765.CrossRefGoogle Scholar
  32. Liu, R., Altschul, E. B., Hedin, R. S., Nakles, D. V., & Dzombak, D. A. (2014). Sequestration enhancement of metals in soils by addition of iron oxides recovered from coal mine drainage sites. Soil and Sediment Contamination: An International Journal, 23, 374–388.CrossRefGoogle Scholar
  33. Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.CrossRefGoogle Scholar
  34. Madrid, L., Diaz-Barrientos, E., Ruiz-Cortés, E., Reinoso, R., Biasioli, M., Davidson, C. M., Duarte, A. C., Grčman, H., Hossack, I., Hursthouse, A. S., Kralj, T., Ljung, K., Otabbong, E., Rodrigues, S., Urquhart, G. J., & Ajmone-Marsan, F. (2006). Variability in concentrations of potentially toxic elements in urban parks from six European cities. Journal of Environmental Monitoring, 8, 1158–1165.CrossRefGoogle Scholar
  35. McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247–260.CrossRefGoogle Scholar
  36. NASEM - National Academies of Sciences, Engineering, and Medicine. (2016). Attribution of extreme weather events in the context of climate change. Washington DC: The National Academies Press.  https://doi.org/10.17226/21852.CrossRefGoogle Scholar
  37. NRC - National Research Council, Committee on Bioavailability of Contaminants in Soils and Sediments. (2003). Bioavailability of contaminants in soils and sediments: processes, tools, and applications. Washington D.C: National Academies Press.Google Scholar
  38. Padoan, E., Romé, C., & Ajmone-Marsan, F. (2017). Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Science of the Total Environment, 601-602, 89–98.CrossRefGoogle Scholar
  39. Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Ajmone-Marsan, F. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.CrossRefGoogle Scholar
  40. Popescu, I., Biasioli, M., Ajmone-Marsan, F., & Stănescu, R. (2013). Lability of potentially toxic elements in soils affected by smelting activities. Chemosphere, 90, 820–826.CrossRefGoogle Scholar
  41. Pouyat, R. V., Yesilonis, I. D., Dombos, M., Szlavecz, K., Setälä, H., Cilliers, S., Hornung, E., Kotze, D. J., & Yarwood, S. (2015). A global comparison of surface soil characteristics across five cities: a test of the urban ecosystem convergence hypothesis. Soil Science, 180, 136–145.CrossRefGoogle Scholar
  42. Qi, Y., Huang, B., & Darilek, J. L. (2014). Effect of drying on heavy metal fraction distribution in rice paddy soil. PLoS One, 9(5), e97327.  https://doi.org/10.1371/journal.pone.0097327.CrossRefGoogle Scholar
  43. Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C. M., Ure, A., & Quevauviller, P. H. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.CrossRefGoogle Scholar
  44. Scalenghe, R., & Ajmone-Marsan, F. (2009). The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90, 1–10.CrossRefGoogle Scholar
  45. Schulz-Zunkel, C., Krueger, F., Rupp, H., Meissner, R., Gruber, B., Gerisch, M., & Bork, H. R. (2013). Spatial and seasonal distribution of trace metals in floodplain soils. A case study with the middle Elbe River, Germany. Geoderma, 211–212, 128–137.CrossRefGoogle Scholar
  46. Shaheen, S. M., Rinklebe, J., Rupp, H., & Meissner, R. (2014). Temporal dynamics of pore water concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters. Environmental Pollution, 191, 223–231.CrossRefGoogle Scholar
  47. Sharma, K., Basta, N. T., & Grewal, P. S. (2015). Soil heavy metal contamination in residential neighborhoods in post-industrial cities and its potential human exposure risk. Urban Ecosystems, 18, 115–132.  https://doi.org/10.1007/s11252-014-0395-7.CrossRefGoogle Scholar
  48. Sialelli, J., Davidson, C. M., Hursthouse, A. S., & Ajmone-Marsan, F. (2011). Human bioaccessibility of Cr, Cu, Ni, Pb and Zn in urban soils from the city of Torino, Italy. Environmental Chemistry Letters, 9, 197–202.CrossRefGoogle Scholar
  49. Silvetti, M., Castaldi, P., Holm, P. E., Deiana, S., & Lombi, E. (2014). Leachability, bioaccessibility and plant availability of trace elements in contaminated soils treated with industrial by-products and subjected to oxidative/reductive conditions. Geoderma, 214–215, 204–212.CrossRefGoogle Scholar
  50. Su, T., Shu, S., Shi, H., Wang, J., Adams, C., & Witt, E. C. (2008). Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta. Environmental Pollution, 156, 944–950.CrossRefGoogle Scholar
  51. Van Laer, L., Degryse, F., Leynen, K., & Smolders, E. (2010). Mobilization of Zn upon waterlogging riparian Spodosols is related to reductive dissolution of Fe minerals. European Journal of Soil Science, 61, 1014–1024.CrossRefGoogle Scholar
  52. Vink, J. P. M., Harmsen, J., & Rijnaarts, H. (2010). Delayed immobilization of heavy metals in soils and sediments under reducing and anaerobic conditions; consequences for flooding and storage. Journal of Soils and Sediments, 10, 1633–1645.CrossRefGoogle Scholar
  53. Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10, 268–292.CrossRefGoogle Scholar
  54. Vodyanitskii, Y. N., & Plekhanova, I. O. (2014). Biogeochemistry of heavy metals in contaminated excessively moistened soils (analytical review). Eurasian Soil Science, 47, 153–161.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DiSAFA - Chimica agrariaUniversità di TorinoGrugliascoItaly
  2. 2.Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC)SevillaSpain
  3. 3.Kmetijski inštitut SlovenijeLjubljanaSlovenia
  4. 4.WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations