Water, Air, & Soil Pollution

, 230:48 | Cite as

Effect of Copper Oxide Nanoparticles on the Physiology, Bioactive Molecules, and Transcriptional Changes in Brassica rapa ssp. rapa Seedlings

  • Ill-Min Chung
  • Kaliyaperumal Rekha
  • Baskar Venkidasamy
  • Muthu ThiruvengadamEmail author


Global deterioration of water, air, and soil quality by the release of toxic chemicals from anthropogenic pollutants is becoming a serious global problem. The extensive use of copper oxide nanoparticles (CuO NPs) can be environmentally hazardous when these NPs enter the atmosphere. The present study aimed to evaluate the role of CuO NPs on plant growth, photosynthetic capacity, and bioactive compounds, as well as their transcriptional level changes in Brassica rapa seedlings. Chlorophyll, carotenoid, and sugar content decreased, while proline and anthocyanins were significantly enhanced in the CuO NP-treated seedlings compared with the untreated controls. Reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2) production were also enhanced in the seedlings exposed to CuO NPs, which could have caused DNA damage that was detected by a DNA laddering assay. The glucosinolate (GSL) and phenolic compound content were significantly increased in CuO NP-treated seedlings compared with that in control seedlings. Transcriptional variation of genes associated with oxidative stress (CAT, POD, and GST), R2R3-type MYB involved in GSL (BrMYB28, BrMYB29, BrMYB34, and BrMYB51), and phenolic compounds (ANS, PAP1, PAL, and FLS) biosynthesis was analyzed using real-time polymerase chain reaction. Significant upregulation of CAT, POD, GST, BrMYB28, BrMYB29, BrMYB34, BrMYB51, ANS, PAP1, PAL, and FLS genes was observed in seedlings exposed to different concentrations of CuO NPs relative to the untreated seedlings. Therefore, we suggest that the use of CuO NPs could stimulate the toxic effects and enhance phytochemicals (i.e., glucosinolates and phenolic compounds) in B. rapa.


Copper oxide nanoparticles Gene expression Glucosinolates Phenolic compounds Reactive oxygen species Brassica rapa 



This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea.


  1. Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., Dizdaroglu, M., Xing, B., & Nelson, B. C. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science Technology, 46, 1819–1827.CrossRefGoogle Scholar
  2. Azeez, L., Lateef, A., & Adebisi, S. A. (2017). Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience, 7, 59–66.CrossRefGoogle Scholar
  3. Bates, L. S. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.CrossRefGoogle Scholar
  4. Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 12, 2383–2394.CrossRefGoogle Scholar
  5. Brennan, T., & Frenkel, C. (1977). Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiology, 59, 411–416.CrossRefGoogle Scholar
  6. Chiang, H. H., & Dandekar, A. M. (1995). Regulation of proline accumulation in Arabidopsis during development and in response to desiccation. Plant Cell Environment, 18, 1280–1290.CrossRefGoogle Scholar
  7. Chung, I. M., Rekha, K., Rajakumar, G., & Thiruvengadam, M. (2018). Production of bioactive compounds and gene expression alterations in hairy root cultures of Chinese cabbage elicited by copper oxide nanoparticles. Plant Cell Tissue Organ Culture, 134, 95–106.CrossRefGoogle Scholar
  8. Da Costa, M. V. J., & Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54(1), 110–119.CrossRefGoogle Scholar
  9. Dietz, K. J., & Herth, S. (2011). Plant nanotoxicology. Trends in Plant Science, 16, 582–589.CrossRefGoogle Scholar
  10. Dimkpa, C. O., McLean, J. E., Latta, D. E., Manango’n, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14, 1125.CrossRefGoogle Scholar
  11. Ebbs, S., & Uchil, S. (2008). Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica, 46(1), 49–55.CrossRefGoogle Scholar
  12. Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, A., Ördög, A., Szepesi, A., Gémes, K., Laskay, G., Erdei, L., & Kolbert, Z. (2013). Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rape seed (Brassica napus L.) to copper stress. Ecotoxicology and Environmental Safety, 94, 179–189.CrossRefGoogle Scholar
  13. García-Sánchez, S., Bernales, I., & Cristobal, S. (2015). Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics, 16, 341.CrossRefGoogle Scholar
  14. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.CrossRefGoogle Scholar
  15. Hassini, I., Baenas, N., Moreno, D. A., Carvajal, M., Boughanmi, N., & Martinez Ballesta, M. D. C. (2017). Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. Journal of the Science of Food and Agriculture, 97(8), 2291–2299.CrossRefGoogle Scholar
  16. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archived Biochemistry Biophysics, 125, 189–198.CrossRefGoogle Scholar
  17. Hedge, J. E., & Hofreiter, B. T. (1962). Estimation of carbohydrate. In R. L. Whistler & J. N. BeMiller (Eds.), Methods in carbohydrate chemistry (pp. 17–22). New York: Academic.Google Scholar
  18. Hussain, M., Raja, N. I., Mashwani, Z. R., Iqbal, M., Sabir, S., & Yasmeen, F. (2017). In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. 3 Biotech, 7(2), 101.CrossRefGoogle Scholar
  19. Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25, 443–447.CrossRefGoogle Scholar
  20. Kasai, Y., Kato, M., Aoyama, J., & Hyodo, H. (1998). Ethylene production and increase in 1-amino-cyclopropane-1-carboxylate oxidase activity during senescence of broccoli florets. Acta Horticulture, (464), 153–157.Google Scholar
  21. Kasana, R. C., Panwar, N. R., Kaul, R. K., & Kumar, P. (2017). Biosynthesis and effects of copper nanoparticles on plants. Environmental Chemistry Letters, 15(2), 233–240.CrossRefGoogle Scholar
  22. Kavi Kishor, P. B., & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environment, 37(2), 300–311.CrossRefGoogle Scholar
  23. Ke, M., Zhu, Y., Zhang, M., Gumai, H., Zhang, Z., Xu, J., & Qian, H. (2017). Physiological and molecular response of Arabidopsis thaliana to CuO nanoparticle (nCuO) exposure. Bulletin of the Environmental Contamination and Toxicology, 99(6), 713–718.CrossRefGoogle Scholar
  24. Kim, S., Lee, S., & Lee, I. (2012). Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water, Air, & Soil Pollution, 223, 2799–2806.CrossRefGoogle Scholar
  25. Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. The Science of the Total Environment, 407(19), 5243–5246.CrossRefGoogle Scholar
  26. Lee, J. G., Bonnema, G., Zhang, N., Kwak, J. H., de Vos, R. C., & Beekwilder, J. (2013). Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates. Journal of Agriculture and Food Chemistry, 24, 3984–3993.CrossRefGoogle Scholar
  27. Lequeux, H., Hermans, C., Lutts, S., & Nathalie, V. (2010). Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48, 673–682.CrossRefGoogle Scholar
  28. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In R. D. Lester Packer (Ed.), Methods in enzymology (Vol. 148, pp. 350–382). Waltham: Academic.Google Scholar
  29. Marslin, G., Sheeba, C. J., & Franklin, G. (2017). Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science, 8, 832.CrossRefGoogle Scholar
  30. Melegari, S. P., Perreault, F., Popovic, R., Costa, R. H., & Matias, W. G. (2013). Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 143, 431–440.CrossRefGoogle Scholar
  31. Mourato, M. P., Moreira, I. N., Leitão, I., Pinto, F. R., Sales, J. R., & Martins, L. L. (2015). Effect of heavy metals in plants of the genus brassica. International Journal of Molecular Science, 16, 17975–17998.CrossRefGoogle Scholar
  32. Nair, P. M. G., & Chung, I. M. (2014). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environmental Science and Pollution Research, 21, 12709–12722.CrossRefGoogle Scholar
  33. Nair, P. M. G., & Chung, I. M. (2015a). Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicology and Environmental Safety, 113, 302–313.CrossRefGoogle Scholar
  34. Nair, P. M. G., & Chung, I. M. (2015b). Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. Journal of Plant Growth Regulation, 34(2), 350–361.CrossRefGoogle Scholar
  35. Nair, P. M. G., Kim, S. H., & Chung, I. M. (2014). Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiologiae Plantarum, 36, 2947–2958.CrossRefGoogle Scholar
  36. Nekrasova, G. F., Ushakova, O. S., Ermakov, A. E., Uimin, M. A., & Byzov, I. V. (2011). Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology, 42(6), 458–463.CrossRefGoogle Scholar
  37. Oloumi, H., Soltaninejad, R., & Baghizadeh, A. (2015). The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrrhizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings. Indian Journal of Plant Physiology, 20(2), 157–161.CrossRefGoogle Scholar
  38. Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8–15.CrossRefGoogle Scholar
  39. Preeti, P., & Tripathi, A. K. (2011). Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) benth seedlings. International. Journal of Environmental Science, 1, 1009–1018.Google Scholar
  40. Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed Research International, 2014, 761264.CrossRefGoogle Scholar
  41. Raven, J. A., Evans, M. C. W., & Korb, R. E. (1999). The role of trace metals in photosynthetic electron transport on O2-evolving organisms. Photosynthetic Research, 60, 111–149.CrossRefGoogle Scholar
  42. Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93, 906–915.CrossRefGoogle Scholar
  43. Shaw, A. K., Ghosh, S., Kalaji, H. M., Bosa, K., Brestic, M., Zivcak, M., & Hossain, Z. (2014). Nano-CuO stress induced modulation of anti-oxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environmental and Experimental Botany, 102, 37–47.CrossRefGoogle Scholar
  44. Shi, J., Abid, A. D., Kennedy, I. M., Hristova, K. R., & Silk, W. K. (2011). Do duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution? Environmental Pollution, 159, 1277–1282.CrossRefGoogle Scholar
  45. Shi, J., Peng, C., Yang, Y., Yang, J., Zhang, H., Yuan, X., Chen, Y., & Hu, T. (2014). Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology, 8, 179–188.CrossRefGoogle Scholar
  46. Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2006). Sucrose specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 140, 637–646.CrossRefGoogle Scholar
  47. Thiruvengadam, M., & Chung, I. M. (2015). Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chemistry, 173, 185–193.CrossRefGoogle Scholar
  48. Thiruvengadam, M., Praveen, N., Kim, E. H., Kim, S. H., & Chung, I. M. (2014). Production of anthraquinones, phenolic compounds and biological activities from hairy root cultures of Polygonum multiflorum Thunb. Protoplasma, 251(3), 555–566.CrossRefGoogle Scholar
  49. Thiruvengadam, M., Gurunathan, S., & Chung, I. M. (2015). Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma, 252(4), 1031–1046.CrossRefGoogle Scholar
  50. Večeřová, K., Večeřa, Z., Dočekal, B., Oravec, M., Pompeiano, A., Tříska, J., & Urban, O. (2016). Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environmental Pollution, 218, 207–218.CrossRefGoogle Scholar
  51. Wang, H., & Joseph, J. A. (1999). Quantifying cellular oxidative stress by dichloro fluorescein assay using microplate reader. Free Radical Biology and Medicine, 27, 612–616.CrossRefGoogle Scholar
  52. Wang, S. H., Yang, Z. M., Yang, H., Lu, B., Li, S. Q., & Lu, Y. P. (2004). Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin Academia Sinica, 45, 203–212.Google Scholar
  53. Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C., & Xing, B. (2012). Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science Technology, 46, 4434–4441.CrossRefGoogle Scholar
  54. Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5, 218–223.CrossRefGoogle Scholar
  55. Wu, S. G., Huang, L., Head, J., Chen, D. R., Kong, I. C., & Tang, Y. J. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Journal of Petroleum and Environmental Biotechnology, 3, 1000126.Google Scholar
  56. Zafar, H., Ali, A., Ali, J. S., Haq, I. U., & Zia, M. (2016). Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Frontiers in Plant Science, 7, 535.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ill-Min Chung
    • 1
  • Kaliyaperumal Rekha
    • 2
  • Baskar Venkidasamy
    • 3
  • Muthu Thiruvengadam
    • 1
    Email author
  1. 1.Department of Applied Bioscience, College of Life and Environmental SciencesKonkuk UniversitySeoulRepublic of Korea
  2. 2.Department of Environmental and Herbal ScienceTamil UniversityThanjavurIndia
  3. 3.Department of BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations