Inhibitory Effects of Bidens pilosa Plant Extracts on the Growth of the Bloom-Forming Alga Microcystis aeruginosa

  • Quyen Van NguyenEmail author
  • Thuong Hoai Tran
  • Thanh Nga Pham
  • Doan Van Thuoc
  • Viet Dang Cao
  • Kyung-Hwan BooEmail author


Algal blooms are one of the greatest aquatic environmental concerns, and the control of algal blooms has become a great challenge in recent years. In this study, we evaluated the effects of Bidens pilosa plant extracts in comparison to those of several widespread plants, including rice (Oryza sativa), Pistia stratiotes, Eichhornia crassipes, and Pteris vittata, on the growth of the bloom-forming blue-green alga Microcystis aeruginosa. Both ethanolic and methanolic extracts of B. pilosa, in contrast to the other plant extracts, exhibited high inhibitory effects on M. aeruginosa growth at a concentration of 500 mg/L (dry weight equivalent, DWE). The inhibition efficiency in terms of the cell density and chlorophyll a concentration significantly reached 84–88% (p < 0.05). In these treatments, a change in algal culture color (from green to brown) and cell death were obviously observed. When we determined the effective concentrations, the B. pilosa extract at concentrations of 250 and 500 mg/L DWE showed significant inhibitory effects on M. aeruginosa growth (p < 0.05), whereas lower concentrations (50–125 mg/L DWE) showed slight or no effects. These data indicate that B. pilosa plant extracts could be used to control M. aeruginosa algal blooms.


Bidens pilosa Microcystis aeruginosa Algal bloom Plant extract Growth inhibition 



We would like to thank the Laboratory for Ecological and Environmental Research, Hanoi National University of Education, for facilitating this study.

Funding Information

This work was supported by the Hanoi National University of Education (SPHN17-11), the Ministry of Education and Training of Vietnam (B 2016-SPH-19), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012862).


  1. Bartolome, A. P., Villaseñor, I. M., & Yang, W.-C. (2013). Bidens pilosa L.(Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Complementary and Alternative Medicine, 2013.
  2. Box, J. (1981). Enumeration of cell concentrations in suspensions of colonial freshwater microalgae, with particular reference to Microcystis aeruginosa. British Phycological Journal, 16(2), 153–164.CrossRefGoogle Scholar
  3. Bridgeman, T. B., Chaffin, J. D., & Filbrun, J. E. (2013). A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011. Journal of Great Lakes Research, 39(1), 83–89.CrossRefGoogle Scholar
  4. Chang, C. L., Chung, C.-Y., Kuo, C.-H., Kuo, T.-F., Yang, C.-W., & Yang, W.-C. (2016). Beneficial effect of Bidens pilosa on body weight gain, food conversion ratio, gut bacteria and coccidiosis in chickens. PLoS One, 11(1), e0146141.CrossRefGoogle Scholar
  5. Chen, J., Zhang, D., Xie, P., Wang, Q., & Ma, Z. (2009). Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese Lake, Lake Taihu, with toxic Microcystis blooms. Science of the Total Environment, 407(10), 3317–3322.CrossRefGoogle Scholar
  6. Chiang, Y.-M., Chuang, D.-Y., Wang, S.-Y., Kuo, Y.-H., Tsai, P.-W., & Shyur, L.-F. (2004). Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. Journal of Ethnopharmacology, 95(2–3), 409–419.CrossRefGoogle Scholar
  7. Chorus, I., & Bartram, J. (2005). Toxic Cyanobacteria in Water. London and New York: Taylor & Francis Group.Google Scholar
  8. Deba, F., Xuan, T. D., Yasuda, M., & Tawata, S. (2008). Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. Var. Radiata. Food Control, 19(4), 346–352.CrossRefGoogle Scholar
  9. Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., et al. (2008). Eutrophication of US freshwaters: Analysis of potential economic damages. Environmental Science & Technology, 43(1), 12–19.CrossRefGoogle Scholar
  10. Falconer, I. R. (1994). Health problems from exposure to cyanobacteria and proposed safety guidelines for drinking and recreational water. In Detection methods of cyanobacterial toxins, The proceedings of the first international symposium on detection methods for cyanobacterial (blue-green algal) toxins.Google Scholar
  11. Fulton, R. S., III, & Paerl, H. W. (1987). Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. Journal of Plankton Research, 9(5), 837–855.CrossRefGoogle Scholar
  12. Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125.CrossRefGoogle Scholar
  13. Guiry, M. D., & Guiry, G. M. (2016). AlgaeBase. http://www.algaebase.org2016.
  14. Horne, A. J., & Goldman, C. R. (1994). Limnology (Second ed.). New York: McGraw-Hill International Ed. USA.Google Scholar
  15. Hudnell, H. K. (2008). Cyanobacterial harmful algal blooms: State of the science and research needs. Advances in Experimental Medicine and Biology, 619, 239–257.CrossRefGoogle Scholar
  16. Khan, M., Kihara, M., & Omoloso, A. (2001). Anti-microbial activity of Bidens pilosa, Bischofia javanica, Elmerillia papuana and Sigesbekia orientalis. Fitoterapia, 72(6), 662–665.CrossRefGoogle Scholar
  17. Komárek, J., & Komárková, J. (2002). Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycology, Olomouc, 2, 1–24.Google Scholar
  18. Lai, B.-Y., Chen, T.-Y., Huang, S.-H., Kuo, T.-F., Chang, T.-H., Chiang, C.-K., et al. (2015). Bidens pilosa formulation improves blood homeostasis and β-cell function in men: a pilot study. Evidence-Based Complementary and Alternative Medicine, 2015, 1–5.CrossRefGoogle Scholar
  19. Landsberg, J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10(2), 113–390.CrossRefGoogle Scholar
  20. Lee, S., & Lee, D. (2018). Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models. International Journal of Environmental Research and Public Health, 15(7), 1322.CrossRefGoogle Scholar
  21. Liang, Y.-C., Yang, M.-T., Lin, C.-J., Chang, C. L.-T., & Yang, W.-C. (2016). Bidens pilosa and its active compound inhibit adipogenesis and lipid accumulation via down-modulation of the C/EBP and PPARγ pathways. Scientific Reports, 6, 24285.CrossRefGoogle Scholar
  22. Newman, J. R., & Barrett, P. (1993). Control of Microcystis aeruginosa by decomposing barley straw. Journal of Aquatic Plant Management, 31, 203–203.Google Scholar
  23. Nga, P. T., Dien, P. H., Quyen, N. V., Thuong, T. H., Quynh, L. T. P., Dat, N. T., et al. (2017). Inhibitory effect of different Eupatorium fortunei Turcz extracts on the growth of Microcystis aeruginosa. Vietnam Journal of Science and Technology, 55(4C), 103–108.CrossRefGoogle Scholar
  24. Paerl, H., & Fulton, R. (2006). Ecology of harmful cyanobacteria. Ecology of Harmful Algae, 95–109.Google Scholar
  25. Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409(10), 1739–1745.CrossRefGoogle Scholar
  26. Park, M.-H., Hwang, S.-J., Ahn, C.-Y., Kim, B.-H., & Oh, H.-M. (2006a). Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kütz em. Elenkin. Bulletin of Environmental Contamination & Toxicology, 77(1), 9–14.CrossRefGoogle Scholar
  27. Park, M. H., Han, M. S., Ahn, C. Y., Kim, H. S., Yoon, B. D., & Oh, H. M. (2006b). Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Letters in Applied Microbiology, 43(3), 307–312.CrossRefGoogle Scholar
  28. Phlips, E. J., Hendrickson, J., Quinlan, E. L., & Cichra, M. (2007). Meteorological influences on algal bloom potential in a nutrient-rich Blackwater river. Freshwater Biology, 52(11), 2141–2155.CrossRefGoogle Scholar
  29. Pillinger, J., Cooper, J., & Ridge, I. (1994). Role of phenolic compounds in the antialgal activity of barley straw. Journal of Chemical Ecology, 20(7), 1557–1569.CrossRefGoogle Scholar
  30. Prociv, P. (2004). Algal toxins or copper poisoning - revisiting the Palm Island "epidemic". Medical Journal of Australia, 181(6), 344.Google Scholar
  31. Reynolds, C., & Jaworski, G. (1978). Enumeration of natural Microcystis populations. British Phycological Journal, 13(3), 269–277.CrossRefGoogle Scholar
  32. Sartory, D., & Grobbelaar, J. (1984). Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 114(3), 177–187.CrossRefGoogle Scholar
  33. Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M., Chavez, F. P., & Haulena, M. (2000). Mortality of sea lions along the Central California coast linked to a toxic diatom bloom. Nature, 403(6765), 80.CrossRefGoogle Scholar
  34. Shirai, M., Matumaru, K., Ohotake, A., Takamura, Y., Aida, T., & Nakano, M. (1989). Development of a solid medium for growth and isolation of axenic Microcystis strains (cyanobacteria). Applied and Environmental Microbiology, 55(10), 2569–2571.Google Scholar
  35. Singh, M., Govindarajan, R., Rawat, A. K. S., & Khare, P. B. (2008). Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. American Fern Journal, 98(2), 98–103.CrossRefGoogle Scholar
  36. Steffen, M. M., Belisle, B. S., Watson, S. B., Boyer, G. L., & Wilhelm, S. W. (2014). Status, causes and controls of cyanobacterial blooms in Lake Erie. Journal of Great Lakes Research, 40(2), 215–225.CrossRefGoogle Scholar
  37. Stewart, I., Schluter, P. J., & Shaw, G. R. (2006). Cyanobacterial lipopolysaccharides and human health–a review. Environmental Health, 5(1), 7.CrossRefGoogle Scholar
  38. Thompson, A. S., Rhodes, J. C., & Pettman, I. (1988). Culture collection of algae and protozoa, catalogue of strains. UK: Natural Environment Research Council.Google Scholar
  39. UNESCO. (1966). Determination of Photosynthetic Pigments in Sea Water (monographs in oceanographic methodology). Paris: UNESCO.Google Scholar
  40. Van Hullebusch, E., Deluchat, V., Chazal, P. M., & Baudu, M. (2002). Environmental impact of two successive chemical treatments in a small shallow eutrophied lake: Part II. Case of copper sulfate. Environmental Pollution, 120(3), 627–634.CrossRefGoogle Scholar
  41. Verspagen, J. M., Passarge, J., Jöhnk, K. D., Visser, P. M., Peperzak, L., Boers, P., et al. (2006). Water management strategies against toxic Microcystis blooms in the Dutch delta. Ecological Applications, 16(1), 313–327.CrossRefGoogle Scholar
  42. Walker, H. W. (2014). Harmful algae blooms in drinking water: Removal of cyanobacterial cells and toxins. Florida: CRC Press.CrossRefGoogle Scholar
  43. Wasmund, N., Topp, I., & Schories, D. (2006). Optimising the storage and extraction of chlorophyll samples. Oceanologia, 48(1), 125–144.Google Scholar
  44. Wu, X., Zhang, Z., Chen, D., Zhang, J., Yang, W., & Jin, Y. (2012). Allelopathic effects of Eichhornia crassipes on the growth of Microcystis aeruginosa. Journal of Agricultural Science and Technology A, 2, 1400–1406.Google Scholar
  45. Wu, X., Wu, H., Chen, J., & Ye, J. (2013). Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environmental Science and Pollution Research, 20(11), 8192–8201.CrossRefGoogle Scholar
  46. Zilberg, B. (1966). Gastroenteritis in Salisbury European children-a five-year study. Central African Journal of Medicine, 12(9), 164–168.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Quyen Van Nguyen
    • 1
    • 2
    Email author
  • Thuong Hoai Tran
    • 1
  • Thanh Nga Pham
    • 3
  • Doan Van Thuoc
    • 1
  • Viet Dang Cao
    • 4
    • 5
  • Kyung-Hwan Boo
    • 4
    • 5
    Email author
  1. 1.Faculty of BiologyHanoi National University of Education (HNUE)HanoiVietnam
  2. 2.Center for Environmental Research and Education (CERE)Hanoi National University of EducationHanoiVietnam
  3. 3.Faculty of ChemistryHanoi National University of EducationHanoiVietnam
  4. 4.Department of Biotechnology, College of Applied Life Science (SARI)Jeju National UniversityJejuRepublic of Korea
  5. 5.Subtropical/tropical Organism Gene BankJeju National UniversityJejuRepublic of Korea

Personalised recommendations