Water, Air, & Soil Pollution

, 229:338 | Cite as

Chemical Behavior of U(VI) in the Presence of Soil Components

  • M. Jiménez-Reyes
  • M. Solache-RíosEmail author


Soil components from different environments (forest (OF), semiarid (SZ), and sand (AS)) were separated from fulvic and humic substances, characterized by DRX, EDS(SEM), and zero-charge points were determined. The sorption of U(VI) by these materials was determined considering contact time, concentration of U(VI), pH, ionic strength, and presence of sodium chloride and humic acids. The time to reach the kinetic sorption equilibrium was ca. 1 min for the components of the SZ and AS soils, whereas those from OF required longer times. The zero-charge points of the materials indicate that in the experimental conditions, the surfaces of the materials are positively charged, as are uranyl ions. The sorption kinetic data were well fitted to the pseudo-second-order model, which indicates chemical sorption. The maximum sorption capacities for U(VI) obtained from data fitted to the Langmuir model of OF and SZ were 49 and 19.8 mg g−1 respectively. Sorption isotherm data for AS were best fitted to the Freundlich model (qe = 5.4 mg g−1). The maximum values of distribution coefficients (Kd) were 23 ± 7 L kg−1, 545 ± 64 L kg−1, and 1178 ± 229 L kg−1 for AS, SZ, and OF, respectively; these values may depend on pH, contact time, initial concentration of U(VI), and the composition of the materials. Sodium chloride in the aqueous solutions affects U(VI) sorption by the materials SZ and AS. The effect of humic acids depends on pH, only in acid media soluble humate complexes may be formed.


Uranium(VI) Soils Sorption Inorganic components of soils, models 



We acknowledge donation of the samples to F. Monroy-Guzmán and E. Fernández-Ramírez (semiarid zone soil), T.J. Zamudio-Zamudio (Alvarado sand), and N. Zárate-Montoya (high purity water). The technical support of E. Morales Moreno, M. Villa Tomasa and I. Z. López Malpica was much appreciated.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Campos, B., Aguilar-Carrillo, J., Algarra, M., Mário, A., Gonçalves, M. A., Rodríguez-Castellón, E., Esteves da Silva, J. C. G., & Bobos, I. (2013). Sorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Applied Clay Science, 85, 53–63.CrossRefGoogle Scholar
  2. Catalano, J. G., & Brown, G. E. (2005). Uranyl sorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochimica et Cosmochimica Acta., 69, 2995–3005.CrossRefGoogle Scholar
  3. Duff, M. C., & Amrhein, C. (1996). Uranium (VI) sorption on goethite and soil in carbonate solutions. Soil Science Society of America Journal., 60, 1393–1400.CrossRefGoogle Scholar
  4. Echevarria, G., Sheppard, M. I., & Morela, J. L. (2001). Effect of pH on the sorption of uranium in soils. Journal of Environmental Radioactivity., 53, 257–264 and references therein.CrossRefGoogle Scholar
  5. Fox, P. M., Davis, J. A., & Zachara, J. M. (2006). The effect of calcium on aqueous uranium (VI) speciation and sorption to ferrihydrite and quartz. Geochimica et Cosmochimica Acta., 70, 1379–1387.CrossRefGoogle Scholar
  6. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., & Wanner, H. (1992). Chemical thermodynamics of uranium (Vol. 715). New York: Elsevier.Google Scholar
  7. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  8. Jiménez-Reyes, M., & Solache-Ríos, M. (2012). The influence of pH on the stability constants of lanthanum and europium complexes with humic acids. Journal of Radioanalytical and Nuclear Chemistry., 293, 273–278.CrossRefGoogle Scholar
  9. Jiménez-Reyes, M., & Solache-Ríos, M. (2014). Chemical behavior of lanthanum in the presence of soils components: sorption and humate complexes. Water, Air, and Soil Pollution., 225, 2213–2226.CrossRefGoogle Scholar
  10. Jiménez-Reyes, M., & Solache-Ríos, M. (2016). Chemical behavior of cobalt and cesium in the presence of inorganic components of a semiarid soil using water of nuclear purity. Process Safety and Environmental Protection., 102, 288–293.CrossRefGoogle Scholar
  11. Křepelová, A., Sachs, S., & Bernhard, G. (2006). Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid. Radiochimica Acta., 94, 825–833.CrossRefGoogle Scholar
  12. Lenhart, J. J., & Honeyman, B. D. (1999). Uranium (VI) sorption to hematite in the presence of humic acid. Geochimica et Cosmochimica Acta., 63, 2891–2901.CrossRefGoogle Scholar
  13. Lenhart, J. J., Cabaniss, S. E., MacCarthy, P., & Honeyman, B. D. (2000). Uranium (VI) complexation with citric, humic and fulvic acids. Radiochimica Acta., 88, 345–354.CrossRefGoogle Scholar
  14. Massuda, K., & Yamamoto, T. (1971). Studies on environmental contamination by uranium. Sorption of Uranium on Soil and its Desorption. Journal of Radiation Research, 12, 94–99.CrossRefGoogle Scholar
  15. McKinley, J. P., Zachara, J. M., Smith, S. C., & Turner, G. D. (1995). The influence of uranyl hydrolysis and multiple site-binding reactions on sorption of U (VI) to montmorillonite. US Department of Energy Publications., Paper 193.Google Scholar
  16. Olguin, M., Solache-Rios, M., Acosta, D., Bosch, P., & Bulbulian, S. (1997). UO2 2+ sorption on bentonite. Journal of Radioanalytical and Nuclear Chemistry., 218, 65–69.CrossRefGoogle Scholar
  17. Pashalidis, I., & Buckau, G. (2007). U (VI) mono-hydroxo humate complexation. Journal of Radioanalytical and Nuclear Chemistry., 273, 315–322.CrossRefGoogle Scholar
  18. Puigdomenech, I. (2010). Program MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms). Royal Institute of Technology. Inorganic Chemistry. 10644 Stockholm Sweden, Scholar
  19. Reich, T., Moll, H., Arnold, T., Denecke, M. A., Hennig, C., Geipel, G., Bernhard, G., Nitsche, H., Allen, P. G., Bucher, J. J., & Edelstein, N. M. (1998). An EXAFS study of uranium (VI) sorption onto silica gel and ferrihydrite. Journal of Electron Spectroscopy and Related Phenomena., 96, 237–243.CrossRefGoogle Scholar
  20. Rosentreter, J. J., Quarder, H. S., Smith, R. W., & McLing, T. (1998). Uranium sorption onto natural sands as a function of sediment characteristics and solution pH. In Sorption of metals by geomedia (pp. 181–208). San Diego: Academic.CrossRefGoogle Scholar
  21. Sheppard, M. I., & Thibault, D. H. (1990). Default soil/liquid partition coefficients, KdS, for four major soil types: a compendium. Health Physics., 59, 471–482.Google Scholar
  22. Sheppard, S. C., Evenden, W. G., & Pollock, R. J. (1989). Uptake of natural radionuclides by field and garden crops. Canadian Journal of Soil Science., 69, 751–767.CrossRefGoogle Scholar
  23. Solache-Ríos, M., Olguín, M. T., Martínez-Miranda, V., Ramírez-García, J., & Zárate-Montoya, N. (2015). Removal behavior of cobalt from aqueous solutions by a sodium modified zeolitic tuff. Water, Air, and Soil Pollution., 226, 1–8.CrossRefGoogle Scholar
  24. Sylwester, E. R., Hudson, E. A., & Allen, P. G. (2000). The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochimica et Cosmochimica Acta., 64, 2431–2438.CrossRefGoogle Scholar
  25. Whicker, J. J., Pinder III, J. E., Ibrahim, S. A., Stone, J. M., Breshears, D. D., & Baker, K. N. (2007). Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction. Health Physics., 93, 36–46.CrossRefGoogle Scholar
  26. Willett, I. R., & Bond, W. J. (1995). Sorption of manganese, uranium, and radium by highly weathered soils. Journal of Environmental Quality., 24, 834–845.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaInstituto Nacional de Investigaciones NuclearesLa Marquesa, OcoyoacacMexico

Personalised recommendations