Advertisement

Water, Air, & Soil Pollution

, 229:301 | Cite as

Examining the Effects of the Destroying Ammunition, Mines, and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit: Part 1—Pseudo-total Concentration

  • Neda Tešan Tomić
  • Slavko Smiljanić
  • M. Jović
  • M. Gligorić
  • D. Povrenović
  • A. Došić
Article
  • 44 Downloads

Abstract

This paper presents the results of determining the pseudo-total concentration of five heavy metals in the soil on which the destruction of ammunition, mines, and explosive devices is carried out by the method of open detonation. In the analyzed area, the concentrations of cadmium, lead, nickel, copper, and zinc were determined, while from the physical properties of the soil were determined the granulometric composition and the pH. The aim of the study is to determine the origin and total load on heavy metals and, based on that, to assess the dangers and impact of the site in terms of the soil pollution by heavy metals. In accordance with the regulations of Bosnia and Herzegovina, the results of the soil testing showed a significant load of copper (up to seven times) and cadmium (up to six times), and exceeding the allowed values for nickel and zinc in some places. Lead was the only metal whose concentration was within the maximum allowed and according to that the soil was classified as unpolluted. A sample of soil from the edge of the pit is the only sample in which all heavy metals, except Ni, were within the maximum allowable concentration. In regard to the concentration of the examined metals, the soil of the pit is classified as medium polluted from the aspect of copper, cadmium, and nickel and highly contaminated with zinc. The concentrations of copper and zinc in the examination area correspond to contaminated soil that represents ecological risk, which requires soil remediation.

Keywords

Soil contamination Open detonation Heavy metals Pseudo-total concentration Soil classification Phytoremediation 

References

  1. Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals (second ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
  2. Ahmad, M., Lee, S.S., Moon, D.H., Yang, J.E., Ok, Y.S. (2012). A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. Environmental Protection Strategies for Sustainable Development. Springer Netherlands, Dordrecht.Google Scholar
  3. Ali, H., Khan, E., & Sayad, M. A. (2013). Phytoremediation of heavy metals – concepts and applications. Chemosphere, 91, 869–881.CrossRefGoogle Scholar
  4. Alverbro, K., Björklund, A., Finnveden, G., Hochschorner, E., & Hägvall, J. (2009). A life cycle assessment of destruction of ammunition. Journal of Hazardous Materials, 170, 1101–1109.CrossRefGoogle Scholar
  5. Amaral Sobrinho, N. M. B., et al. (2008). Avaliação da Contaminação por Metais Pesados de Area de Destruição de Munição e do seu Entorno. Relatório Final. Seropédica, RJ: FAPUR-UFRRJ, Universidade Federal Rural do Rio de Janeiro, Departamento de Solos.Google Scholar
  6. Andersson, A. (1979). Distribution of heavy metals as compared to some other elements between grain size fraction in soil. Swedish Journal of Agricultural Research, 9, 7–13.Google Scholar
  7. Antić-Mladenović, S., (2004). Hemija Ni i Cr u zemljištima sa njihovim prirodnim visokim sadržajima. Doktorska disertacija, Beograd, 1–178,(In Serbian).Google Scholar
  8. Baham, J., Ball, N. B., & Sposito, G. (1978). Journal of Environmental Quality, 7, 181–188.CrossRefGoogle Scholar
  9. Baltrenas, P., Ignatavičius, G., & Vaišis, V. (2001). Investigation of soil pollution with heavy metals in the Pabrade central military ground. Environmental Engireering, IX(1), 3–8.Google Scholar
  10. Barać, N. M. (2017). Mobilnost i biodostupnost odabranih elemenata u poljoprivrednom zemljištu aluviona reke Ibar, Doktorska disertacija, Univerzitet u Beogradu, Tehnološko-metaluruški fakultet, (In Serbian).Google Scholar
  11. BAS/ISO 10390:2009, Soil quality. Determination of pH.Google Scholar
  12. Bogdanović, D. (2002). Izvori zagađenja zemljišta kadmijumom. Review, Letopis naučnih radova, 1, 32–42 (In Serbian).Google Scholar
  13. Bradl, H.B. (2005). Source and origins of heavy metals, Chapter 1, Interface Science and Technology, Elsevier. Vol. 6, 1–27.
  14. Brady, N. C. (1990). The nature and properties of soils (10th ed.). London: Macmillan.Google Scholar
  15. Brinkmann, W.L.F., Plass, W. (1984) The spatial distribution of heavy metals in the soils of the Steinbach Basin - Rhine-Main Area. Proceedings of International Symposium on Recent Investigations in the Zone of Aeration, Munich, 1: 57–68.Google Scholar
  16. Brochu, S., Diaz, E., Thiboutot, S., Ampleman, G., Marois, A., Gagnon, A. DRDC Valcartier, Québec, Qc, Canada; Hewitt, A.D., Bigl, S.R., Walsh, M.E., Walsh, M.R., Bjella, K., Ramsey, C., Taylor, S. Cold Regions Research and Engineering Laboratory, Hanover, NH, USA; Wingfors, H., Qvarfort, U., Karlsson, R.-M., Ahlberg, M. Totalförsvarets forskningsinstitut (FOI), Sweden; Creemers, A., van Ham, N. Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO), The Netherlands. (2009). Environmental Assessment od 100 years of Military Training at Canadian Forces Base Petawawa, Phase 1 - Study of the Presence of Munitions-Related Residues in Soils and Vegetation of Main Ranges and Training Areas.Google Scholar
  17. Chakraborty, S., Dutta, A. R., Sural, S., Gupta, D., & Sen, S. (2013). Ailing bones andfailing kidneys: a case of chronic cadmium toxicity. Annals of Clinical Biochemistry, 50(5), 492–495.CrossRefGoogle Scholar
  18. Chuan, M. C., Shu, G. Y., & Liu, J. C. (1996). Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollution, 90, 543–556.CrossRefGoogle Scholar
  19. Czupryna, G., Levy, R.D., Maclean, A.I., Gold, H. (1988). In situ immobilization of heavy metal contaminated soil. Final report. Engineering &Services Laboratory, Air Force Engineering & Services Center, Tyndall Air Force Base, Florida. http://www.dtic.mil/dtic/tr/fulltext/u2/a201244.pdf Accessed 01.Dec. 2017.
  20. De Haan, F.A.M. and Visser-Reyneveld, M.I. (1996). Soil pollution and soil protection, International Training Centre (PHLO), Wageningen Agricultural University Wageningen.Google Scholar
  21. Denys, S., Rollin, C., Guillot, F., & Baroudi, H. (2006). In situ phytoremediation of PAHs contaminated soilsfollowing a bioremediation treatment. Water, Air & Soil Pollution, Focus, 6, 299–315.CrossRefGoogle Scholar
  22. Dermatas, D., Cao, X., Tsaneva, V., Shen, G., & Grubb, D. G. (2006). Fate and behavior of metal (loid) contaminants in an organic matter-rich shooting range soil: Implications for remediation. Water, Air, Soil Pollution, Focus, 6, 143–155.CrossRefGoogle Scholar
  23. Dostava informacija za poligon Glamoč, Hercegbosanske šume d.o.o. Kupres, broj: 01/ 1–1862/15 od 05.11.2015. „in Bosnian“.Google Scholar
  24. DPR-EGASPIN,(2002). Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (EGASPIN), Department ofPetroleum Resources, Lagos, Nigeria.Google Scholar
  25. Duijm, N., & Markert, F. (2002). Assessment of technologies for disposing explosive waste. Journal of Hazardous Materials, 2(90), 137–153.CrossRefGoogle Scholar
  26. Durres (2012.). Stanje u oblasti naoružanja i municije u OS BiH, Ministarstvo odbrane BiH, (In Serbian).Google Scholar
  27. Gangya, Z., Yunqing, L., & Mingkuang, W. (2011). Remediation of copper polluted red soils with clay materials. Journal of Environmental Sciences, 23(3), 461–467.CrossRefGoogle Scholar
  28. Glavić, M., Klemenčić, S. (2012). Kodeks dobre poljoprivredne prakse u zaštiti zemljišta, Program razvoja tržišne poljoprivrede, (FARMA), (In Serbian).Google Scholar
  29. Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, 142, 530–539.CrossRefGoogle Scholar
  30. Greičiūtė K., Vasarevičius S. (2003). Investigation of the decrease of soil organic matter and soil pollution by heavy metals in areas intensively used for military activities. Proceedings of the Sixth Symosium and Exhibition “Environmental Contamination in Central and Eastern Europeand the Comonwealth of Independent States”. 527 p.Google Scholar
  31. Greičiūtė, K., Juozulynas, A., Šurkienė, G., & Valeikienė, V. (2007). Research on soil disturbance and pollution with heavy metals in military grounds. Geologija, 57, 14–20.Google Scholar
  32. GWRTAC, (1997) “Remediation of metals-contaminated soils and groundwater,” Tech. Rep. TE-97-01, Pittsburgh, Pa, USA, GWRTAC-E Series.Google Scholar
  33. Hagfors, M. (2013). Destruction of old expired and spoiled munition in Finland - environmental effects of open surface mass detonations, Finnish Defence Forces Technical Research Centre, Explosives and NBC Defence Division, Explosives Technology, European Conference of Defence and the Environment, Finnish Ministry of Defence, 119–128.Google Scholar
  34. Hooda, V. (2007). Phytoremediation of toxic metals from soil and waste water. Journal of Environmental Biology, 28, 367–376.Google Scholar
  35. Interstate Technology and Regulatory Council- ITRC, (2003). Characterization and remediation of soils at closed small arms firing ranges.http://www.state.nj.us/dep/dsr/bscit/FiringRanges.pdf Accessed 25.Nov.2017.
  36. ISO 10381–1:2004, Soil quality - sampling - part 1: guidance on the design of sampling programmes.Google Scholar
  37. ISO 25177:2008(E), Soil quality – field soil description, First Edition.Google Scholar
  38. ISO/TS 17892–4:2016. Geotechnical investigation and testing – laboratory testing of soil – part 4: determination of particle size distribution TC/SC: ISO, 31.Google Scholar
  39. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, N. K. (2014). Toxicity, mechanism and health effects of some heavy metals, review article. Interdisciplinary Toxicology, 7(2), 60–72.CrossRefGoogle Scholar
  40. Ji, P., Sun, T., Song, Y., Ackland, M. L., & Liu, Y. (2011). Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environmental Pollution, 159, 762–768.CrossRefGoogle Scholar
  41. Johnson, C. A., Moench, H., Wersin, P., Kugler, P., & Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. Journal of Environmental Quality, 34, 248–254.Google Scholar
  42. Kastori, R. (1983). The Role of Elements in Plant Nutrition. Matica srpska, Novi Sad.Google Scholar
  43. Knechtenhofer, L. A., Xifra, I. O., Scheinost, A. C., Fluhler, H., & Kretzschmar, R. (2003). Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow. Journal of Plant Nutrition and Soil Science, 166, 84–92.CrossRefGoogle Scholar
  44. Kramer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.CrossRefGoogle Scholar
  45. Kubota, H., & Takenaka, C. (2003). Arabis gemmifera is a hyperaccumulator of Cd and Zn. International Journal of Phytoremediation, 5(3), 197–201.CrossRefGoogle Scholar
  46. Lee, J., Chen, B., Allen, H.E., Huang, C.P., Sparks, D.L.. (1991). The fate and transport of inorganic contaminants in New Jersey soils, Final report, University of Delaware, Department of Environmental Protection.https://www.state.nj.us/dep/dsr/publications/p32266.pdf Accessed 12.June.2018.
  47. Liu, H., Probst, A., & Liao, B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339, 153–166.CrossRefGoogle Scholar
  48. Liu, L. N., Chen, H. S., Cai, P., Liang, W., & Huang, Q. Y. (2009). Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of Hazardous Materials, 163, 563–567.CrossRefGoogle Scholar
  49. Marić, M. J. (2014). Mogućnosti korištenja nekih divljih i kultivisanih biljaka za remedijaciju zemljišta, doktorska disertacija, Univerzitet u Beogradu, Tehnički fakultet, Bor, (In Serbian).Google Scholar
  50. Martin, W. A., Felt, D. R., Larson, S. L., Fabian, G. L. and Nestle, C. C. (2012). Open burn/open detonation (OBOD) area management using lime for explosives transformation and metals immobilization, ESTCP Project Number ER-0742.http://www.dtic.mil/dtic/tr/fulltext/u2/a556181.pdf Accessed 10.June.2017.
  51. Martinez, C. E., & Motto, H. L. (2000). Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution, 107(1), 153–158.CrossRefGoogle Scholar
  52. Mejáre, M., & Bülow, L. (2001). Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, 19, 67–73.CrossRefGoogle Scholar
  53. Mench, M., Schwitzguébel, J. P., Schröder, P., Bert, V., Gawronski, S., & Gupta, S. (2009). Assessment ofsuccessful experiments and limitations of phytotechnologies: contaminant uptake, detoxificationand sequestration, and consequences for food safety. Environmental Science and Pollution Research, 16, 876–900.CrossRefGoogle Scholar
  54. Mickovski Stefanović, V.Ž. (2012). Uticaj genotipa i lokaliteta na dinamiku akumulacije teških metala u vegetativnim organima pšenice, doktorska disertacija, Univerzitet u Beogradu, Poljoprivredni fakultet (In Serbian).Google Scholar
  55. Mihajlović, A. (2015). Fizičke karakteristike zemljišta i distribucija teških metala na gradskom području Novog Sada, doktorska disertacija, Univerzitet u Novom Sadu, Prirodno-matematički fakultet, Odjeljenje za fiziku, Novi Sad, (In Serbian).Google Scholar
  56. Ministarstvo odbrane Republike Hrvatske (MORH) (2007). Praćenje stanja zemljišta i vode prije i poslije vojne vježbe „NOBLE MIDAS 07“na poligonu Eugen Kvaternik u Slunju, (In Croatian). https://www.morh.hr/images/stories/morh_sadrzaj/pdf/nm07_voda_tlo.pdf Accessed 10.June 2017.
  57. Ministry of the Environment, Finland, (2007). Government Decree on the Assessment of Soil Contamination and Remediation Needs (214/2007, March 1, 2007).Google Scholar
  58. Mrvić, V., Zdravković, M., Sikirić, B., Čakmak, D., Kostić-Kravljanac, L., (2009). Štetni i opasni elementi u zemljištu, in: Mrvić, V., Antonović, G., Martinović, L. (Eds.), Plodnost i sadržaj opasnih I štetnih materija u zemljištima Centralne Srbije. Beograd, pp. 75–144, (In Serbian).Google Scholar
  59. Nederlof, M. M., Van Riemsdijk, W. H., & De Haan, F. A. M. (1993). Effect of pH on the bioavailability of metals in soils. In H. J. P. Eijsackers & T. Hamers (Eds.), Integrated Soil and Sediment Research: A Basis for Proper Protection. Soil & Environment (Vol. 1, pp. 215–219). Dordrecht: Springer.CrossRefGoogle Scholar
  60. Nelson, P. N., Dictor, M. C., & Soulas, G. (1994). Availability of organic carbon in soluble and particle-size fractions from a soil profile. Soil Biology and Biochemistry, 26, 1549–1555.CrossRefGoogle Scholar
  61. Nešić, N. (2011). Fitoremedijacija i biljke pogodne za fitoremedijaciju voda zagađenih teškim metalima. Institut za multidisciplinarna istraživanja, Univerzitet u Beogradu, (In Serbian) https://www.chem.bg.ac.rs/~grzetic/predavanja/Hemija%20zivotne%20sredine%20II/Biljke%20pogodne%20za%20fitoremedijaciju%20-%20Nevena%20Cule%202011.pdf .Accessed26 December 2017.
  62. Okoro, H. K., Fatoki, O. S., Adekola, F. A., Ximba, B. J., & Snyman, R. G. (2012). A review of sequential extraction procedures for heavy metals speciation in soil and sediments. Open Access Scientific Reports, 1(3), 1–9.Google Scholar
  63. Olajire, A. A., & Ayodele, E. T. (1997). Contamination of roadside soil and grass with heavy metals. Environment International, 23, 91–101.CrossRefGoogle Scholar
  64. Pilipović A., Klašnja B., Orlović S. (2002). Uloga topola u fitoremedijaciji zemljišta i podzemnih voda. Topola, 169/170, 57–66, (In Serbian).Google Scholar
  65. Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.CrossRefGoogle Scholar
  66. Polycyclic Aromatic Hydrocarbons: Harmful to the Environment! Toxic! Inevitable? (2012). German Federal Environment Agency (UBA) Press Office Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany. https://www.bsnc.nl/wp-content/uploads/2015/10/Polycyclic-Aromatic-Hydrocarbons-why-the-ban.pdf
  67. Pravilnik FBiH, 72/09. Pravilnik o utvrđivanju dozvoljenih količina štetnih i opasnih materija u zemljištu i metode njihovog ispitivanja, Službene novine FBiH broj 72/2009, (In Bosnian).Google Scholar
  68. Querol, X., Alastuey, A., Noreno, N., Alvarez-Ayuso, E., Garcia-Sanchez, A., Camal, J., et al. (2006). Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62, 171–180.CrossRefGoogle Scholar
  69. Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.CrossRefGoogle Scholar
  70. Reeves, R.D., Baker, A.J.M. (1999) Metal-accumulating plants. In: Phytoremediation of toxic metals: using plants to clean up the environment. Eds, I Raskin, BD Ensley, 193–229, John Wiley &Sons Inc, New York.Google Scholar
  71. Robinson, B. H., Bischofberger, S., Stoll, A., Schroer, D., Furrer, G., Roulier, S., Gruenwald, A., Attinger, W., & Schulin, R. (2008). Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environmental Pollution, 153, 668–676.CrossRefGoogle Scholar
  72. Sakakibara, M., Ohmori, Y., Ha, N. T. H., Sano, S., & Sera, K. (2011). Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean: Soil, Air, Water, 39, 735–741.Google Scholar
  73. Sanderson, P., Bolan, N., Bowman, M., Naidu, R. (2010). Distribution and availability of metal contaminants in shooting range soils around Australia, in: 19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia.Google Scholar
  74. Shabani, N., & Sayadi, M. H. (2012). Evaluation of heavy metals accumulation by two emergent macrophytes from the polluted soil: an experimental study. Environmentalist, 32, 91–98.CrossRefGoogle Scholar
  75. Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment, Biological Forum. An International Journal, 2(2), 112–121.Google Scholar
  76. Soil Contamination: Impacts on Human Health,(2013). European Commission, Science for Environment Policy, Issue 5. http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR5_en.pdf Accessed12. October 2017.
  77. Soriano, A., Pallarés, S., Pardo, F., Vicente, A. B., Sanfeliu, T., & Bech, J. (2012). Deposition of heavy metals from particulate settleable matter in soils of an industrialised area. Journal of Geochemical Exploration, 113, 36–44.CrossRefGoogle Scholar
  78. Spuller, C., Weigand, H., & Marb, C. (2007). Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity. Journal of Hazardous Materials, 141, 378–387.CrossRefGoogle Scholar
  79. Tack, F. M. G. (2010). Trace elements: general soil chemistry, principles and processes. In Hooda, P. S. (Ed.), Trace Elements in Soil. A John Wiley and Sons, Ltd. Publication. ISBN 978–1–405-16037-7.Google Scholar
  80. Thiboutot, S., Ampleman, G., Brochu, S., Diaz, E., Martel, R., Hawari, J., Sunahara, G., Walsh, M. R., Walsh, M. E., & Jenkins, T. F. (2012). Environmental characterization of military training ranges for munitions – related contaminants: understanding and minimizing the environmental impacts of live – fire training. InternationalJournal of Energetic Materials and Chemical Propulsion, 11(1), 17–57.CrossRefGoogle Scholar
  81. Tong, Y. P., Kneer, R., & Zhu, Y. G. (2004). Vacuolar compartmentalization: a second generation approach to engineering plants for phytoremediation. Trends in Plant Science, 9, 7–9.CrossRefGoogle Scholar
  82. Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.CrossRefGoogle Scholar
  83. Ubavić, M, Dozet, D., Bogdanović, D. (1993) Teški metali u zemljištu. Teški metali i pesticidi u zemljištu. Institut za ratarstvo i povrtarstvo, Novi Sad, 31–46, (In Serbian).Google Scholar
  84. Uredba o programu sistemskog praćenja kvaliteta zemljišta, indikatorima za ocenu rizika od degradacije zemljišta i metodologiju za izradu remedijacionih programa, Službeni glasnik RS broj 88/2010, (In Serbian).Google Scholar
  85. US EPA, (2002). Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response, Washington, D.C. http://www.epa.gov/superfund/heal th/conmedia/soil/index.htm
  86. US EPA, (2007). Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. Test Methods Eval. Solid Waste, 1–30.Google Scholar
  87. Usman, A., Kuzyakov, Y., Stahr, K. (2005). Effect of clay minerals on imobilization of heavy metals and microbial activity in a sewage sludge – contaminated soil, research article, JSS – J Soils & Sediments, 5 (4) 245–252.Google Scholar
  88. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., Van der Lelie, D., & Mench, M. (2009). Phytoremediation ofcontaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16, 765–794.CrossRefGoogle Scholar
  89. Wahba, M.M. , Labib, B. F. , Darwish, KHM. and Zaghloul, M.A. (2017). Application of some clay minerals to eliminate the hazards of heavy metals in contaminated soils. 15th International Conference on Environmental Science and Technology, CEST.Google Scholar
  90. Wei, C., Wang, C., & Yang, L. (2009). Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China. Journal of Environmental Sciences, 21, 1230–1236.CrossRefGoogle Scholar
  91. Wenzel, W. W., Adriano, D. C., Salt, D. and Smith, R. (1999). Pytoremediation: a plant-microbebased remediation system, in Adriano, D. C., Bollag, J. M., Frankenberger W. T. Jr. and Sims, R. C. (eds), Bioremediation of Contaminated Soils, Agronomy Monograph No. 37, ASA-CSSA-SSSA, Madison, WI, U.S.A. 457–508.Google Scholar
  92. Wuana, R. A., Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, International Scholarly Research Network, Vol. 2011., review article, ID 402647.Google Scholar
  93. Yi, X., Xuefeng, L., Yingming, X., Xu, Q., Qingqing, H., Lin, W., & Yuebing, S. (2017). Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere, 27(2), 193–204.CrossRefGoogle Scholar
  94. Zhang, C. (2006). Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142, 501–511.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Neda Tešan Tomić
    • 1
  • Slavko Smiljanić
    • 2
  • M. Jović
    • 3
  • M. Gligorić
    • 2
  • D. Povrenović
    • 4
  • A. Došić
    • 2
  1. 1.Ministry of Defense of Bosnia and HerzegovinaSarajevoBosnia and Herzegovina
  2. 2.Faculty of TechnologyUniversity of East SarajevoZvornikBosnia and Herzegovina
  3. 3.Institute of Nuclear Science VinčaUniversity of BelgradeBelgradeSerbia
  4. 4.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations