Advertisement

Water, Air, & Soil Pollution

, 229:297 | Cite as

Caesalpinia ferrea Fruits as a Biosorbent for the Removal of Methylene Blue Dye from an Aqueous Medium

  • Lucas Bragança Carvalho
  • Pricila Maria Batista Chagas
  • Luciana Matos Alves Pinto
Article
  • 57 Downloads

Abstract

In the present work, a biosorbent was produced through the alkaline washing of Brazilian ironwood fruits. Infrared and thermogravimetric analyses showed changes in the obtained biosorbent with the removal of extractives, whose micrograph presents a more fibrous structure for the treated material. The biosorption behavior of the methylene blue dye shows efficiency at pH above five, and at alkaline pH, it reaches removal efficiency of up to 90% for five successive cycles. Adsorption kinetics is fast and fits the pseudo-second-order model, which, with the best fit of the Langmuir isotherm model, indicates a chemical adsorption mechanism. The thermodynamic trials express the spontaneity of biosorption and enthalpy and entropy variations of − 10.47 kJ mol−1 and 51.84 J mol−1 K−1, respectively. The maximum biosorption capacity is of 125.2 mg g−1 for the temperature of 25 °C, consisting in a low-cost alternative for the removal of this type of contaminant from an aqueous medium.

Keywords

Biosorption Biomass Aqueous pollutants Methylene blue Kinetics 

Notes

Funding Information

This study is financially supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES.

References

  1. Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 92(3), 263–274.CrossRefGoogle Scholar
  2. Aranda-García, E., & Cristiani-Urbina, E. (2018). Kinetic, equilibrium, and thermodynamic analyses of Ni(II) biosorption from aqueous solution by acorn shell of Quercus crassipes. Water, Air, & Soil Pollution, 229(4), 119.CrossRefGoogle Scholar
  3. Asgher, M. (2012). Biosorption of reactive dyes: a review. Water, Air, & Soil Pollution, 223(5), 2417–2435.CrossRefGoogle Scholar
  4. Auta, M., & Hameed, B. H. (2012). Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chemical Engineering Journal, 198, 219–227.CrossRefGoogle Scholar
  5. Baçaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Luu, R. P. T., Maldonado-Hodar, F. J., et al. (2001). Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon, 39(3), 425–432.CrossRefGoogle Scholar
  6. Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282.CrossRefGoogle Scholar
  7. Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., & Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology, 99(17), 8441–8444.CrossRefGoogle Scholar
  8. Bulgariu, L., & Bulgariu, D. (2014). Enhancing biosorption characteristics of marine green algae (Ulva lactuca) for heavy metals removal by alkaline treatment. Journal of Bioprocessing & Biotechniques, 4(1), 1.CrossRefGoogle Scholar
  9. Carvalho, L. B., Carvalho, T. G., Magriotis, Z. M., de Castro Ramalho, T., & Pinto, L. D. M. A. (2014). Cyclodextrin/silica hybrid adsorbent for removal of methylene blue in aqueous media. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 78(1–4), 77–87.CrossRefGoogle Scholar
  10. Cheung, C. W., Porter, J. F., & McKay, G. (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Research, 35(3), 605–612.CrossRefGoogle Scholar
  11. Chieng, H. I., Zehra, T., Lim, L. B. L., Priyantha, N., & Tennakoon, D. T. B. (2014). Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environmental Earth Sciences, 72(7), 2263–2277.CrossRefGoogle Scholar
  12. Chieng, H. I., Lim, L. B., & Priyantha, N. (2017). Enhancement of crystal violet dye adsorption on Artocarpus camansi peel through sodium hydroxide treatment. Desalination and Water Treatment, 58, 320–331.CrossRefGoogle Scholar
  13. Chung, K. T. (2000). Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes. Journal of Environmental Science & Health Part C, 18(1), 51–74.CrossRefGoogle Scholar
  14. Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97(9), 1061–1085.CrossRefGoogle Scholar
  15. Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2015). Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal, 54(4), 1253–1263.CrossRefGoogle Scholar
  16. Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. Journal of Hazardous Materials, 167(1–3), 1–9.CrossRefGoogle Scholar
  17. Elwakeel, K. Z., El-Bindary, A. A., El-Sonbati, A. Z., & Hawas, A. R. (2017a). Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. Canadian Journal of Chemistry, 95(8), 807–815.CrossRefGoogle Scholar
  18. Elwakeel, K. Z., Elgarahy, A. M., & Mohammad, S. H. (2017b). Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. Journal of Environmental Chemical Engineering, 5(1), 578–587.CrossRefGoogle Scholar
  19. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.CrossRefGoogle Scholar
  20. Gallão, M. I., Normando, L. D. O., Vieira, Í. G., Mendes, F. N., Ricardo, N. M., & de Brito, E. S. (2013). Morphological, chemical and rheological properties of the main seed polysaccharide from Caesalpinia ferrea Mart. Industrial Crops and Products, 47, 58–62.CrossRefGoogle Scholar
  21. Geßler, A., Duarte, H. M., Franco, A. C., Lüttge, U., De Mattos, E. A., Nahm, M., et al. (2005). Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE—Brazil III. Three legume trees in a semi-deciduous dry forest. Trees, 19(5), 523–530.CrossRefGoogle Scholar
  22. Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115–124.CrossRefGoogle Scholar
  23. Jafari, M., Salavati-Niasari, M., Saberyan, K., & Sabarou, H. (2015). A simple sonochemical route for synthesis silver selenide nanoparticles from SeCl4 and silver salicylate. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(1), 58–67.CrossRefGoogle Scholar
  24. Kačíková, D., Kačík, F., Čabalová, I., & Ďurkovič, J. (2013). Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresource Technology, 144, 669–674.CrossRefGoogle Scholar
  25. Kooh, M. R. R., Dahri, M. K., & Lim, L. B. L. (2018). Jackfruit seed as low-cost adsorbent for removal of malachite green: artificial neural network and random forest approaches. Environmental Earth Sciences, 77(12), 434.CrossRefGoogle Scholar
  26. Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39(9), 1848–1906.CrossRefGoogle Scholar
  27. Lee, S. K., & Mills, A. (2003). Novel photochemistry of leuco-methylene blue. Chemical Communications, 18, 2366–2367.CrossRefGoogle Scholar
  28. Lim, L. B. L., Priyantha, N., Hei Ing, C., Khairud Dahri, M., Tennakoon, D. T. B., Zehra, T., & Suklueng, M. (2015). Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination and Water Treatment, 53(4), 964–975.Google Scholar
  29. Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., Chieng, H. I., Dahri, M. K., & Suklueng, M. (2017). Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry, 10, S3216–S3228.CrossRefGoogle Scholar
  30. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., et al. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B: Biointerfaces, 90, 197–203.CrossRefGoogle Scholar
  31. Luis-Zarate, V. H., Rodriguez-Hernandez, M. C., Alatriste-Mondragon, F., Chazaro-Ruiz, L. F., & Rangel-Mendez, J. R. (2018). Coconut endocarp and mesocarp as both biosorbents of dissolved hydrocarbons in fuel spills and as a power source when exhausted. Journal of Environmental Management, 211, 103–111.CrossRefGoogle Scholar
  32. Malkoc, E., Nuhoglu, Y., & Dundar, M. (2006). Adsorption of chromium (VI) on pomace—an olive oil industry waste: batch and column studies. Journal of Hazardous Materials, 138(1), 142–151.CrossRefGoogle Scholar
  33. Massocatto, C. L., Paschoal, E. C., Buzinaro, N., Oliveria, T. F., Tarley, C. R. T., Caetano, J., et al. (2013). Preparation and evaluation of kinetics and thermodynamics studies of lead adsorption onto chemically modified banana peels. Desalination and Water Treatment, 51(28–30), 5682–5691.CrossRefGoogle Scholar
  34. Mitrogiannis, D., Markou, G., Çelekli, A., & Bozkurt, H. (2015). Biosorption of methylene blue onto Arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Chemical Engineering, 3(2), 670–680.CrossRefGoogle Scholar
  35. Mohammed, R. R., Ketabchi, M. R., & McKay, G. (2014). Combined magnetic field and adsorption process for treatment of biologically treated palm oil mill effluent (POME). Chemical Engineering Journal, 243, 31–42.CrossRefGoogle Scholar
  36. Mohan, M., Banerjee, T., & Goud, V. V. (2015). Hydrolysis of bamboo biomass by subcritical water treatment. Bioresource Technology, 191, 244–252.CrossRefGoogle Scholar
  37. Mohtar, S. S., Busu, T. T. M., Noor, A. M., Shaari, N., Yusoff, N. A., Bustam, M. A., et al. (2015). Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Bioresource Technology, 192, 212–218.CrossRefGoogle Scholar
  38. Ng, C., Losso, J. N., Marshall, W. E., & Rao, R. M. (2002). Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system. Bioresource Technology, 85(2), 131–135.CrossRefGoogle Scholar
  39. Ohira, S., Takaya, K., Mitsui, T., Kido, M., Kakumoto, K., Hayashi, K. I., et al. (2013). New chalcone dimers from Caesalpinia ferrea Mart act as potent inhibitors of DNA topoisomerase II. Tetrahedron Letters, 54(37), 5052–5055.CrossRefGoogle Scholar
  40. Ramiah, M. V. (1970). Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 14(5), 1323–1337.CrossRefGoogle Scholar
  41. Rauf, M. A., & Ashraf, S. S. (2012). Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, 209, 520–530.CrossRefGoogle Scholar
  42. Rojo, E., Alonso, M. V., Domínguez, J. C., Saz-Orozco, B. D., Oliet, M., & Rodriguez, F. (2013). Alkali treatment of viscose cellulosic fibers from eucalyptus wood: structural, morphological, and thermal analysis. Journal of Applied Polymer Science, 130(3), 2198–2204.CrossRefGoogle Scholar
  43. Ronix, A., Pezoti, O., Souza, L. S., Souza, I. P., Bedin, K. C., Souza, P. S., et al. (2017). Hydrothermal carbonization of coffee husk: optimization of experimental parameters and adsorption of methylene blue dye. Journal of Environmental Chemical Engineering, 5(5), 4841–4849.CrossRefGoogle Scholar
  44. Rudzinski, W., & Plazinski, W. (2006). Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. The Journal of Physical Chemistry B, 110(33), 16514–16525.CrossRefGoogle Scholar
  45. Sen, T. K., Afroze, S., & Ang, H. M. (2011). Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water, Air, & Soil Pollution, 218(1–4), 499–515.CrossRefGoogle Scholar
  46. Sharma, Y. C., & Upadhyay, S. N. (2009). Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy & Fuels, 23(6), 2983–2988.CrossRefGoogle Scholar
  47. Singh, D. P., & Trivedi, R. K. (2013). Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. International Journal of ChemTech Research, 5(2), 727–734.Google Scholar
  48. Singh, K. P., Gupta, S., Singh, A. K., & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials, 186(2–3), 1462–1473.CrossRefGoogle Scholar
  49. Song, T., Yu, S., Wang, X., Teng, C., Bai, X., Liang, J., et al. (2017). Biosorption of lead (II) from aqueous solution by sodium hydroxide modified Auricularia auricular spent substrate: isotherms, kinetics, and mechanisms. Water, Air, & Soil Pollution, 228(7), 236.CrossRefGoogle Scholar
  50. Stavropoulos, G. G., & Zabaniotou, A. A. (2005). Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials, 82(1–2), 79–85.CrossRefGoogle Scholar
  51. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11.CrossRefGoogle Scholar
  52. Sun, D., Zhang, X., Wu, Y., & Liu, X. (2010). Adsorption of anionic dyes from aqueous solution on fly ash. Journal of Hazardous Materials, 181(1–3), 335–342.CrossRefGoogle Scholar
  53. Tanaka, K., Padermpole, K., & Hisanaga, T. (2000). Photocatalytic degradation of commercial azo dyes. Water Research, 34(1), 327–333.CrossRefGoogle Scholar
  54. Vadivelan, V., & Kumar, K. V. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286(1), 90–100.CrossRefGoogle Scholar
  55. Vasconcelos, C. F. B., Maranhão, H. M. L., Batista, T. M., Carneiro, E. M., Ferreira, F., Costa, J., et al. (2011). Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats. Journal of Ethnopharmacology, 137(3), 1533–1541.CrossRefGoogle Scholar
  56. Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environment International, 75, 11–20.CrossRefGoogle Scholar
  57. Wang, C., Li, H., Li, M., Bian, J., & Sun, R. (2017). Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments. Scientific Reports, 7(1), 593.CrossRefGoogle Scholar
  58. Weber Jr., W. J., McGinley, P. M., & Katz, L. E. (1992). A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environmental Science & Technology, 26(10), 1955–1962.CrossRefGoogle Scholar
  59. Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environmental Science & Technology, 48(16), 9523–9530.CrossRefGoogle Scholar
  60. Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal, 153(1–3), 1–8.Google Scholar
  61. Xia, C., Jing, Y., Jia, Y., Yue, D., Ma, J., & Yin, X. (2011). Adsorption properties of Congo red from aqueous solution on modified hectorite: kinetic and thermodynamic studies. Desalination, 265(1–3), 81–87.CrossRefGoogle Scholar
  62. Xiao, B., Sun, X., & Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability, 74(2), 307–319.CrossRefGoogle Scholar
  63. Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science, 209, 172–184.CrossRefGoogle Scholar
  64. Zhao, B., Shang, Y., Xiao, W., Dou, C., & Han, R. (2014). Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model. Journal of Environmental Chemical Engineering, 2(1), 40–45.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryFederal University of LavrasLavrasBrazil

Personalised recommendations