Advertisement

Water, Air, & Soil Pollution

, 229:293 | Cite as

Recovery of Amoebae Community in the Root Soil of M. sativa after a Strong Contamination Pulse with n-Hexane

  • Sandra Cortés-Pérez
  • Salvador Rodríguez Zaragoza
  • Ronald Ferrera-Cerrato
  • Víctor Manuel Luna-Pabello
Article
  • 44 Downloads

Abstract

Microbial food webs tolerate toxic compounds depending on individualistic species resistance and their ability of using alternate food sources. Soil polluted with low-molecular weight volatile organics, such as hexane, diminishes bacterial and fungal communities despite its short residence time. Survival of microbial species depends on perturbation intensity, which in turn restricts resources for amoebae survival in polluted soil. Soil functional recovery from anthropogenic perturbations depends on microbial organic matter (OM) metabolization of pollutants. However, reconfiguration of amoebae community after soil exposure remains largely unknown. A microcosms study was carried out to determine the effects of hexane on the community structure of soil amoebae as well as the importance of Medicago sativa on amoebae community recovering. Hexane had a negative impact on species richness and structure of the amoebae community 24 h after pollution. There was a significant increase in species richness and number of amoebae 30 days after contamination. These two parameters further increased after 60 days from contamination. After 30 days of the initial trophozoites extinction caused by Hexane, M. sativa’s. Root zone showed a significant increase of both species richness and number of individuals. This recovery trend was kept after 60 days when the highest values in species richness and abundance of individuals were shown in both polluted and non-polluted microcosms. In conclusion, M. sativa’s root zone speeds up recovery of the amoebae community structure after pollution exposure.

Keywords

Soil pollution Hexane Microbial food web Amoebae trophic groups Medicago sativa 

Notes

Acknowledgments

Subnargem grant 2010–11 BM-ex. Sandra Cortés Perez acknowledges the support of Posgrado en Ciencias Biológicas, UNAM, CONACyT for their support in obtaining her doctoral degree.

Supplementary material

11270_2018_3944_MOESM1_ESM.docx (90 kb)
ESM 1 (DOCX 89 kb)
11270_2018_3944_MOESM2_ESM.docx (41 kb)
ESM 2 (DOCX 41 kb)

References

  1. Alrumman, S. A., Standing, D. B., & Paton, G. I. (2015). Effects of hydrocarbon contamination on soil microbial community and enzyme activity. Journal of King Saud University - Science, 27(1), 31–41  https://doi.org/10.1016/j.jksus.2014.10.001.CrossRefGoogle Scholar
  2. Arriaga, S., Muñoz, R., Hernández, S., Guieysse, B., & Revah, S. (2006). Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors. Environmental Science & Technology, 40(7), 2390–2395.  https://doi.org/10.1021/es051512m.CrossRefGoogle Scholar
  3. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57(1), 233–266.  https://doi.org/10.1146/annurev.arplant.57.032905.105159.CrossRefGoogle Scholar
  4. Beare, M., Coleman, D., Hendrix, P. F., & Odum, E. P. (1995). A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil, 170, 5–22.  https://doi.org/10.1007/bf02183051.CrossRefGoogle Scholar
  5. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13.  https://doi.org/10.1111/j.1574-6941.2009.00654.x.CrossRefGoogle Scholar
  6. Berga, M., Székely, A. J., & Langenheder, S. (2012). Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS One, 7(5), e36959.  https://doi.org/10.1371/journal.pone.0036959.CrossRefGoogle Scholar
  7. Bergersen, F. J. (1971). Biochemistry of symbiotic nitrogen fixation in legumes. Annual Review of Plant Physiology, 22(1), 121–140.  https://doi.org/10.1146/annurev.pp.22.060171.001005.CrossRefGoogle Scholar
  8. Bonkowski, M. (2004). Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist, 162(3), 617–631.  https://doi.org/10.1111/j.1469-8137.2004.01066.x.CrossRefGoogle Scholar
  9. Bouwman, L. A., & Zwart, K. B. (1994). The ecology of bacterivorous protozoans and nematodes in arable soil. Agriculture, Ecosystems and Environment, 51(1–2), 145–160.  https://doi.org/10.1016/0167-8809(94)90040-X.CrossRefGoogle Scholar
  10. Bowman, A. R., Reeder, D. J., & Lober, W. R. (1990). Changes in soil properties in a central plains rangeland soil after 3, 20, and 60 years of cultivation. Soil Science, 150, 851–857.  https://doi.org/10.1097/00010694-199012000-00004.CrossRefGoogle Scholar
  11. Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74(3), 738–744.  https://doi.org/10.1128/AEM.02188-07.CrossRefGoogle Scholar
  12. Buckley, D. H., & Schmidt, T. M. (2001). The structure of microbial communities in soil and the lasting impact of cultivation. Microbial Ecology, 42(1), 11–21.  https://doi.org/10.1007/s002480000108.CrossRefGoogle Scholar
  13. Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64(1), 807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106.CrossRefGoogle Scholar
  14. Calderon, F. J., Jackson, L. E., Scow, K. M., & Rolston, D. E. (2000). Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology and Biochemistry, 32, 1547–1559.CrossRefGoogle Scholar
  15. Cerniglia, C. E. (2003). Recent advances in the biodegradation of polycyclic aromatic hydrocarbons by Mycobacterium species. In V. Šašek, J. A. Glaser, & P. Baveye (Eds.), The utilization of bioremediation to reduce soil contamination: problems and solutions (pp. 51–73). Dordrecht: Springer Netherlands.  https://doi.org/10.1007/978-94-010-0131-1_4.CrossRefGoogle Scholar
  16. Cortés-Pérez, S., Rodríguez-Zaragoza, S., & Mendoza-López, M. R. (2014). Trophic structure of amoeba communities near roots of Medicago sativa after contamination with fuel oil no. 6. Microbial Ecology, 67(2), 430–442.  https://doi.org/10.1007/s00248-013-0305-1.CrossRefGoogle Scholar
  17. Coûteaux, M.-M., & Darbyshire, J. F. (1998). Functional diversity amongst soil protozoa. Applied Soil Ecology, 10, 229–237.  https://doi.org/10.1016/S0929-1393(98)00122-X.CrossRefGoogle Scholar
  18. Elliott, E. T., & Coleman, D. C. (1988). Let the soil work for us. Ecological Bulletins, 39, 23–32 Retrieved from http://www.jstor.org/stable/20112982.Google Scholar
  19. Emmerson, M., & Yearsley, J. M. (2004). Weak interactions, omnivory and emergent food-web properties. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1537), 397 LP–397405 Retrieved from http://rspb.royalsocietypublishing.org/content/271/1537/397.abstract.CrossRefGoogle Scholar
  20. Franzluebbers, A. J., Hons, F. M., & Zuberer, D. A. (1995). Tillage and crop effects on seasonal dynamics of soil CO2 evolution, water content, temperature, and bulk density. Applied Soil Ecology, 2(2), 95–109.  https://doi.org/10.1016/0929-1393(94)00044-8.CrossRefGoogle Scholar
  21. Gajda, A., Czyż, E., Stanek-Tarkowska, J., Dexter, A. R., Furtak, K., & Grządziel, J. (2017). Effects of long-term tillage practices on the quality of soil under winter wheat. Plant, Soil and Environment, 63, 236–242.  https://doi.org/10.17221/223/2017-PSE.CrossRefGoogle Scholar
  22. Greenwood, P. E., & Nikulin, M. S. (1996). A guide to chi-squared testing. New York: Wiley-Intersience Publication.Google Scholar
  23. Haichar, Z., Marol, C., Berge, O., & Rangel-castro, J. I. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2, 1221–1230.  https://doi.org/10.1038/ismej.2008.80.CrossRefGoogle Scholar
  24. Heipieper, H. J., Neumann, G., Cornelissen, S., & Meinhardt, F. (2007). Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Applied Microbiology and Biotechnology, 74(5), 961–973.  https://doi.org/10.1007/s00253-006-0833-4.CrossRefGoogle Scholar
  25. Holyoak, M., & Sachdev, S. (1998). Omnivory and the stability of simple food webs. Oecologia, 117(3), 413–419.  https://doi.org/10.1007/s004420050675.CrossRefGoogle Scholar
  26. Hünninghaus, M., Koller, R., Kramer, S., Marhan, S., Kandeler, E., & Bonkowski, M. (2017). Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia, 62, 1–8.  https://doi.org/10.1016/j.pedobi.2017.03.002.CrossRefGoogle Scholar
  27. Isken, S., & de Bont, J. A. M. (1998). Bacteria tolerant to organic solvents. Extremophiles, 2, 229–238.  https://doi.org/10.1007/s007920050065.CrossRefGoogle Scholar
  28. Kratina, P., LeCraw, R. M., Ingram, T., & Anholt, B. R. (2012). Stability and persistence of food webs with omnivory: is there a general pattern? Ecosphere, 3(6), 1–18.  https://doi.org/10.1890/ES12-00121.1.CrossRefGoogle Scholar
  29. Labud, V., Garcia, C., & Hernandez, T. (2007). Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere, 66, 1863–1871.  https://doi.org/10.1016/j.chemosphere.2006.08.021.CrossRefGoogle Scholar
  30. Long, Z. T., Bruno, J. F., & Duffy, J. E. (2011). Food chain length and omnivory determine the stability of a marine subtidal food web. Journal of Animal Ecology, 80(3), 586–594.  https://doi.org/10.1111/j.1365-2656.2010.01800.x.CrossRefGoogle Scholar
  31. Magurran, A. E. (2004). Measuring of biological diversity. Oxford: Blackwell Science. Google Scholar
  32. Mattison, R. G., Taki, H., & Harayama, S. (2005). The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microbial Ecology, 49(1), 142–150 Retrieved from http://www.jstor.org/stable/25153161.CrossRefGoogle Scholar
  33. McCarty, G. W., Meisinger, J. J., & Jenniskens, F. M. M. (1995). Relationships between total-N, biomass-N and active-N in soil under different tillage and N fertilizer treatments. Soil Biology and Biochemistry, 27(10), 1245–1250.  https://doi.org/10.1016/0038-0717(95)00060-R.CrossRefGoogle Scholar
  34. Odum, E. P., Finn, J. T., & Franz, E. H. (1979). Perturbation theory and the subsidy-stress gradient. BioScience, 29(6), 349–352.  https://doi.org/10.2307/1307690.CrossRefGoogle Scholar
  35. Øvreås, L., & Torsvik, V. (1998). Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 36(3), 303–315.  https://doi.org/10.1007/s002489900117.CrossRefGoogle Scholar
  36. Page, F. C. (1976). A revised classification of the Gymnamoebia (Protozoa: Sarcodina). Zoological Journal of the Linnean Society, 58(1), 61–77.  https://doi.org/10.1111/j.1096-3642.1976.tb00820.x.CrossRefGoogle Scholar
  37. Page, F. C. (1988). A new key to freshwater and soil gymnamoebae: with instructions for culture. Freshwater biological association. Retrieved from https://books.google.com.mx/books/about/A_New_Key_to_Freshwater_and_Soil_Gymnamo.html?id=9DIJAQAAMAAJ&redir_esc=y
  38. Page, F. C., & Siemensma, F. J. (1991). Nackte Rhizopoda und Heliozoa. New York: Gustav Fischer, Stuttgart.Google Scholar
  39. Patterson, D. J. (1996). Free-living freshwater Protozoa.Google Scholar
  40. Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11), 789–799.  https://doi.org/10.1038/nrmicro3109.CrossRefGoogle Scholar
  41. Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56(1), 15–39.  https://doi.org/10.1146/annurev.arplant.56.032604.144214.CrossRefGoogle Scholar
  42. Scherer-Lorenzen, M. (2008). CONTENTS. In: W. Barthlott, K. E. Linsenmair, & S. Porembsk (Eds.), Biodiversity: structure and function (Vol. 1, p. 336). ©Encyclopedia of Life Support Systems (EOLSS).Google Scholar
  43. Shannon, C. E., & Weaver, W. (1998). The mathematical theory of communication. Champaign: University of Illinois Press Retrieved from https://books.google.com.mx/books?id=IZ77BwAAQBAJ.Google Scholar
  44. Siddiqui, R., & Khan, N. A. (2012). Biology and pathogenesis of Acanthamoeba. Parasites & Vectors, 5, 6.  https://doi.org/10.1186/1756-3305-5-6.CrossRefGoogle Scholar
  45. Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201–222.Google Scholar
  46. Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.  https://doi.org/10.1038/163688a0.CrossRefGoogle Scholar
  47. Singh, B. N. (1942). Selection of bacterial food by soil flagellates and amoebae. Annals of Applied Biology, 29(1), 18–22  https://doi.org/10.1111/j.1744-7348.1942.tb06917.x.CrossRefGoogle Scholar
  48. Smirnov, A., & Brown, S. (2004). Guide to the methods of study and identification of soil gymnamoebae. Protistology 3.Google Scholar
  49. Sundin, P., Valeur, A., Olsson, S., & Odham, G. (1990). Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microbiology Letters, 73(1), 13–22.  https://doi.org/10.1111/j.1574-6968.1990.tb03920.x.CrossRefGoogle Scholar
  50. Thomas, V., McDonnell, G., Denyer, S. P., & Maillard, J.-Y. (2010). Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Reviews, 34(3), 231–259.  https://doi.org/10.1111/j.1574-6976.2009.00190.x.CrossRefGoogle Scholar
  51. US EPA, OCSPP, O (n.d.). Toluene results - AEGL program. Retrieved from https://19january2017snapshot.epa.gov/aegl/hexane-results-aegl-program_.html
  52. Walker, G., Simpson, A. G. B., Edgcomb, V., Sogin, M. L., & Patterson, D. J. (2001). Ultrastructural identities of Mastigamoeba punctachora, Mastigamoeba simplex and Mastigella commutans and assessment of hypotheses of relatedness of the pelobionts (Protista). European Journal of Protistology, 37(1), 25–49.  https://doi.org/10.1078/0932-4739-00780.CrossRefGoogle Scholar
  53. Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Update on root exudation and rhizosphere biology root exudation and rhizosphere biology 1. Plant Physiology, 132(May), 44–51.  https://doi.org/10.1104/pp.102.019661.Although.CrossRefGoogle Scholar
  54. Williamson, V. M., & Gleason, C. A. (2003). Plant–nematode interactions. Current Opinion in Plant Biology, 6(4), 327–333.  https://doi.org/10.1016/S1369-5266(03)00059-1.CrossRefGoogle Scholar
  55. Witholt, B., de Smet, M.-J., Kingma, J., van Beilen, J. B., Kok, M., Lageveen, R. G., & Eggink, G. (2017). Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: Background and economic potential. Trends in Biotechnology, 8, 46–52.  https://doi.org/10.1016/0167-7799(90)90133-I.CrossRefGoogle Scholar
  56. Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279–338.  https://doi.org/10.2307/1943563.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratorio de Microbiología, UBIPROFes-Iztacala UNAMTlalnepantlaMéxico
  2. 2.Área de Microbiología, Campus MontecilloColegio de PostgraduadosTexcocoMexico
  3. 3.Laboratorio de Microbiología Experimental Departamento de BiologíaFacultad de Química Ciudad UniversitariaCubículoMéxico

Personalised recommendations