Advertisement

Water, Air, & Soil Pollution

, 229:299 | Cite as

N2O, CO2, Production, and C Sequestration in Vineyards: a Review

  • Eleonora Nistor
  • Alina Georgeta Dobrei
  • Alin Dobrei
  • Dorin Camen
  • Florin Sala
  • Horia Prundeanu
Article
  • 130 Downloads

Abstract

Even if it is less polluting than other farm sectors, grape growing management has to adopt measures to mitigate greenhouse gas (GHG) emissions and to preserve the quality of grapevine by-products. In viticulture, by land and crop management, GHG emissions can be reduced through adjusting methods of tillage, fertilizing, harvesting, irrigation, vineyard maintenance, electricity, natural gas, and transport until wine marketing, etc. Besides CO2, nitrous oxide (N2O) and methane (CH4), released from fertilizers and waste/wastewater management are produced in vineyards. As the main GHG in vineyards, N2O can have the same harmful action like large quantities of CO2. Carbon can be found in grape leaves, shoots, and even in fruit pulp, roots, canes, trunk, or soil organic matter. C sequestration in soil by using less tillage and tractor passing is one of the efficient methods to reduce GHG in vineyards, with the inconvenience that many years are needed for detectable changes. In the last decades, among other methods, cover crops have been used as one of the most efficient way to reduce GHG emissions and increase fertility in vineyards. Even if we analyze many references, there are still limited information on practical methods in reducing emissions of greenhouse gases in viticulture. The aim of the paper is to review the main GHG emissions produced in vineyards and the approached methods for their reduction, in order to maintain the quality of grapes and other by-products.

Keywords

Carbon Cover crops GHG emissions Grapevine Nitrous oxide C sequestration 

References

  1. Adams, R. M., Adams, D. M., Callaway, J., Callaway, C.-C., & McCarl, B. A. (1993). Sequestering carbon on agricultural land: social costs and impacts on timber markets. Contemporary Policy Issues, 11, 76–87.CrossRefGoogle Scholar
  2. Alluvione, F., Bertora, C., Zavattaro, L., & Grignani, C. (2010). Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Science Society of America Journal, 74(2), 384–395.CrossRefGoogle Scholar
  3. Basche, A. D., Miguez, F. E., Kaspar, T., & Castellano, M. J. (2014). Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. Journal of Soil and Water Conservation, 69(6), 471–482.CrossRefGoogle Scholar
  4. Bass, K. (2016). What percent of global greenhouse gas emissions is agriculture responsible for? The Farmarian. Available from: http://www.farmarian.com/what-percent-of-global-greenhouse-gas-emissions-is-agriculture-responsible-for.
  5. Bates, T. R., Dunst, R. M., & Joy, P. (2002). Seasonal dry matter, starch and nutrient distribution in “concord” grapevine roots. HortScience, 37(2), 313–316.Google Scholar
  6. Batjes, N. H., & Dijkshoorn, J. A. (1999). Carbon and nitrogen stocks in the soils of the Amazon region. Geoderma, 89, 273–286.CrossRefGoogle Scholar
  7. Bauerle, T., Smart, D. R., Bauerle, W., Stockert, C. M., & Eissenstat, D. M. (2008). Root foraging in response to heterogeneous soil moisture in two grapevines that differ in potential growth rate. New Phytologist, 179, 857–866.CrossRefGoogle Scholar
  8. Baumgartner, K., Steenwerth, K., & Veilleux, L. (2008). Cover-crop systems affect weed communities in a California vineyard. Weed Science, 56, 596–605.CrossRefGoogle Scholar
  9. Beare, M. H., Cabrera, M. L., Hendrix, P. F., & Coleman, D. C. (1994). Aggregate-protected and unprotected organic matter pools in conventional- and no-tillage soils. Soil Science Society of America Journal, 58, 787–795.CrossRefGoogle Scholar
  10. Bosco, S., di Bene, C., Galli, M., Remorini, D., Massai, R., & Bonari, E. (2011). Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district in Tuscany, Italy. Italian Journal of Agronomy, 6(2), 93–100.CrossRefGoogle Scholar
  11. Bouwman, A. F., Boumans, L. J. M., & Batjes, N. H. (2002). Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4), 1058–1071.Google Scholar
  12. Bremner, J. M. (1997). Sources of nitrous oxide in soils. Nutrient cycling in agroecosystems. Dordrecht, 49(1–3), 7–16.Google Scholar
  13. Capros, P., De Vita, A., Tasios, N., Siskos, P., Kannavou, M., Petropoulos, A., Evangelopoulou, S., Zampara, M., Papadopoulos, D., Paroussos, L, et al. (2016). EU Reference Scenario 2016. EU Energy, Transport and GHG Emissions - Trends to 2050, Publication office of the European Union (2016), ISBN: 978-92-79-52373-1. http://pure.iiasa.ac.at/id/eprint/13656/. Accessed 27 Dec 2016.
  14. Carlisle, E. A., Steenwerth, K. L., & Smart, D. R. (2006). Effects of land use on soil respiration: Conversion of oak woodlands to vineyards. Journal of Environmental Quality, 35, 1396–1404.CrossRefGoogle Scholar
  15. Carlisle, E., Smart, D. R., Browde, J. & Arnold, A. (2009). Carbon footprints in vineyard operations, Practical winery and vineyard Journal, pp. 8-12. https://www.practicalwinery.com/sepoct09/carbon1.htm. Accessed 15 Nov 2016.
  16. Carlisle, E., Smart, D., Williams, L. E. & Summers, M. (2010). California vineyard greenhouse gas emissions: Assessment of the available literature and determination of research needs, California Sustainable Winegrowing Alliance, pp. 6-33. https://www.sustainablewinegrowing.org/docs/CSWA%20GHG%20Report_Final.pdf. Accessed 28 Nov 2016.
  17. Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 31(2), 132–140.CrossRefGoogle Scholar
  18. Celette, F., Findeling, A., & Gary, C. (2009). Competition for nitrogen in an unfertilized intercropping system: the case of an association of grapevine and grass cover in a Mediterranean climate. European Journal of Agronomy, 30, 41–51.CrossRefGoogle Scholar
  19. Chan, K. Y., Conyers, M. K., Li, G. D., Helyar, K. R., Poile, G., Oates, A., & Barchia, I. M. (2011). Soil carbon dynamics under different cropping and pasture management in temperate Australia: results of three long-term experiments. Soil Research, 49, 320–328.CrossRefGoogle Scholar
  20. Chiarawipa, R., Wang, Y., Zhong Z. X. & Hai Han, Z. (2013). Growing season carbon dynamics and stocks in relation to vine ages under a vineyard agroecosystem in Northern China. American Journal of Plant Physiology 8 (1): 1-16 doi: 10.3923/ajpp.2013.1.16  CrossRefGoogle Scholar
  21. Colman, T. & Päster, P. (2007). Red, white and “green”: the cost of carbon in the global wine trade. American Association of Wine Economists, 9, 1–20.  https://doi.org/10.1080/09571260902978493.CrossRefGoogle Scholar
  22. Cotching, B. (2009). Soil health for farming in Tasmania, Chapter 5: Organic matter and soil life, (pp. 35–44), ISBN: 978-0-646-50764-4.Google Scholar
  23. Delgado, J. A., Dillon, M. A., Sparks, R. T., & Essah, S. Y. C. (2007). A decade of advances in cover crops: cover crops with limited irrigation can increase yields, crop quality, and nutrient and water use efficiencies while protecting the environment. Journal of Soil and Water Conservation, 62, 110A–117A.Google Scholar
  24. Deurer, M., Clothier, B. E., Greven, M., Green, S. & Mills, T. (2008). Soil carbon stocks and their change in orchards and vineyards in New Zealand, Report - The Horticulture and Food Research Institute of New Zealand Ltd, pp. 11-12. http://www.climatecloud.co.nz/CloudLibrary/Climate%20change%20-%201390%20-%20Markus%20Deurer%20-%20Soil%20carbon%20stocks%20and%20their%20change%20in%20orchards%20HR25805%20rtp.pdf. Accessed 22 Nov 2016.
  25. Dobrei, A., Dobrei, A. G., Sala, F., Nistor, E., Mălăescu, M., Dragunescu, A., & Cristea, T. (2014). Research concerning the influence of soil maintenance on financial performance of vineyards. Journal of Horticulture, Forestry and Biotechnology, 18(1), 156–164.Google Scholar
  26. Dobrei, A. G., Nistor, E., Sala, F., & Dobrei, A. (2015). Tillage practices in the context of climate change and a sustainable viticulture. Notulae Scientia Biologicae, 7(4), 500–504.CrossRefGoogle Scholar
  27. European Commision. EFSA (European Food Safety Authority), 2016. Technical report on the outcome of the consultation with Member States and EFSA on the basic substance applications for Urtica spp.for use in plant protection as insecticide, acaricide and fungicide. EFSA supporting publication 2016:EN-1075. 72pp. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2016.EN-1075.
  28. Feyereisen, G. W., Wilson, B. N., Sands, G. R., Strock, J. S., & Porter, P. M. (2006). Potential for a rye cover crop to reduce nitrate loss in south-western Minnesota. Agronomy Journal, 98(6), 1416–1426.CrossRefGoogle Scholar
  29. Franks, J. R. & Hadingham, B. (2012). Reducing greenhouse gas emissions from agriculture: avoiding trivial solutions to a global problem, Land Use Policy 29 (4): 727–736.CrossRefGoogle Scholar
  30. Garland, G. M., Suddick, E., Burger, M., Horwath, W. R., & Six, J. (2011). Direct N2O emissions following transition from conventional till to no-till in a cover cropped Mediterranean vineyard (Vitis vinifera). Agriculture, Ecosystems and Environment, 144(1–2), 423–428.CrossRefGoogle Scholar
  31. Gianelle, D., Gristina, L., Pitacco, A., Spano, D., La Mantia, T., Marras, S., Meggio, F., Novara, A., Sirca, C., & Sottocornola, M. (2015). The role of vineyards in the carbon balance throughout Italy, Chapter 11. In R. Valentini & F. Miglietta (Eds.), The greenhouse gas balance of Italy, environmental science and engineering (pp. 159–171). Berlin: Springer-Verlag.Google Scholar
  32. Gomes, J., Bayer, C., De Souza Costa, F., De Cássia Piccolo, M., Zanatta, J. A., Vieira, F. C., & Six, J. (2009). Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil and Tillage Research, 106(1), 36–44.CrossRefGoogle Scholar
  33. Gonzalez-Sanchez, E. J., Ordonez-Fernandez, R., Carbonell-Bojollo, R., Veroz-Gonzalez, O., & Gil-Ribes, J. A. (2012). Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil & Tillage Research, 122, 52–60.CrossRefGoogle Scholar
  34. Goward, J. (2012). Estimating & predicting carbon sequestered in a vineyard with soil surveys, spatial data & GIS management. Thesis – Bachelor of Engineering (Surveying & Sis) – The University of New South Wales, pp. 39–42, 52–57.Google Scholar
  35. Gregory, J., Dixon, K., Stouffer, R., Weaver, A., Driesschart, E., Eby, M., Fichefet, T., Hasumi, H., Hu, A. et al. (2005). A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentrations. Geophysical Research Letters, 32, L12703.1–L12703.5,  https://doi.org/10.1029/2005GL023209.CrossRefGoogle Scholar
  36. Hawk, J., & Martinson, T. E. (2007). Sustainable viticulture: optimizing nitrogen use in vineyards, New York. Fruit Quarterly, 15(1), 25–29.Google Scholar
  37. Helgason, B. L., Walley, F. L., & Germida, J. J. (2010). No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Applied Soil Ecology, 46, 390–397.CrossRefGoogle Scholar
  38. Irving, L. J. (2015). Review - carbon assimilation, biomass partitioning and productivity in grasses. Agriculture, 5, 1116–1134.CrossRefGoogle Scholar
  39. Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climatic Change, 73(3), 319–343.CrossRefGoogle Scholar
  40. Kavargiris, S. E., Mamolos, A. P., Tsatsarelis, C. A., Nikolaidou, A. E., & Kalburtji, K. L. (2009). Energy resources’ utilization in organic and conventional vineyards: energy flow, greenhouse gas emissions and biofuel production. Biomass & Bioenergy, 33, 1239–1250.CrossRefGoogle Scholar
  41. Kroodsma, D. A., & Field, C. B. (2006). Carbon sequestration in California agriculture, 1980-2000. Ecological Applications, 16(5), 1975–1985.CrossRefGoogle Scholar
  42. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.CrossRefGoogle Scholar
  43. Lemke, R. L., Zhong, Z., Campbell, C. A., & Zentner, R. (2007). Can pulse crops play a role in mitigating greenhouse gases from North American agriculture? Agronomy Journal, 99, 1719–1725.CrossRefGoogle Scholar
  44. Longbottom, M. L., & Petrie, P. R. (2015). Role of vineyard practices in generating and mitigating greenhouse gas emissions. Australian Journal of Grape and Wine Research, 21(S1), 522–536.CrossRefGoogle Scholar
  45. Ludwig, B., Geisseler, D., Michel, K., Joergensen, R. G., Schulz, E., Merbach, I., Raupp, J., Rauber, R., Hu, K., Niu, L., & Liu, X. (2011). Effects of fertilization and soil management on crop yields and carbon stabilization in soils: a review. Agronomy for Sustainable Development, 31, 361–372.CrossRefGoogle Scholar
  46. Mangalassery, S., Sjögersten, S., Sparkes, D. L., Sturrock, C. J., Craigon, J., & Mooney, S. J. (2014). To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Scientific Reports, 4, 4586.CrossRefGoogle Scholar
  47. Marras, S., Masia, S., Duce, P., Spano, D., & Sirca, C. (2015). Carbon footprint assessment on a mature vineyard. Agricultural and Forest Meteorology, 214-215, 350–356.CrossRefGoogle Scholar
  48. McGourty, G., Nosera, J., Tylicki, S., & Toth, A. (2008). Self-reseeding annual legumes evaluated as cover crops for untilled vineyards. California Agriculture, 62 (4), 191–194.  https://doi.org/10.3733/ca.v062n04p191 CrossRefGoogle Scholar
  49. Morande, J. A. (2015). Quantifying the spatial-temporal variability in carbon stocks in a California vineyard, Thesis, pp. 21–52.Google Scholar
  50. Mosier, A. R., Halvorson, A. D., Peterson, G. A., Robertson, G. P., & Sherrod, L. (2005). Measurement of net global warming potential in three agroecosystems. Nutrient Cycling in Agroecosystems, 72, 67–76.CrossRefGoogle Scholar
  51. Munaluna, F., & Meincken, M. (2008). An evaluation of South African fuel wood with regards to calorific value and environmental impact. Biomass and Bioenergy, 33, 415–420.CrossRefGoogle Scholar
  52. Nendel, C., & Kersebaum, K. C. (2004). A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecological Modelling, 177(1–2), 1–15.CrossRefGoogle Scholar
  53. Novara, A., Gristina, L., Saladino, S. S., Santoro, A., & Cerdà, A. (2011). Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil and Tillage Research, 117, 140–147.CrossRefGoogle Scholar
  54. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. (2016). Greenhouse gas emissions from soils - a review, Chemie der Erde - Geochemistry 76 (3): 327–352.CrossRefGoogle Scholar
  55. Ohmart, C. P. (2011). View from the Vineyard: A Practical Guide to Sustainable Winegrape Growing, Chapter 8: Ecosystem management, ISBN: 978-1-953879-90-9, Pp. 74–76; Chapter 11: Sustainable soil management, pp. 111–120. https://www.outercoastalplain.com/pdf/Vol8-Issue01-09-Lawrence-Coia-Ohmart.pdf.
  56. Paradelo, R., Moldes, A. B., & Barral, M. T. (2016). Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost. Waste Management & Research, 29(11), 1177–1184.CrossRefGoogle Scholar
  57. Peregrina, F., Larrieta, C., Ibáñez, S., & García-Escudero, E. (2010). Labile organic matter, aggregates, and stratification ratios in a semiarid vineyard with cover crops. Soil Science Society of America Journal, 74, 2120–2130.CrossRefGoogle Scholar
  58. Peregrina, F., Pérez-Álvarez, E. P., & García-Escudero, E. (2014). The short term influence of aboveground biomass cover crops on C sequestration and β-glucosidase in a vineyard ground under semiarid conditions. Spanish Journal of Agricultural Research, 12(4), 1000–1007.CrossRefGoogle Scholar
  59. Petersen, S. O., Mutegi, J. K., Hansen, E. M., & Munkholm, L. J. (2011). Tillage effects on N2O emissions as influenced by a winter cover crop. Soil Biology and Biochemistry, 43(7), 1509–1517.CrossRefGoogle Scholar
  60. Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil and Science, 62, 42–55.CrossRefGoogle Scholar
  61. Rugani, B., Vázquez-Rowe, I., Benedetto, G., & Benetto, E. (2013). A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. Journal of Cleaner Production, 54, 61–77.CrossRefGoogle Scholar
  62. Sainju, U. M., Singh, B. P., & Whitehead, W. F. (2007). Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil and Tillage Research, 63, 167–179.CrossRefGoogle Scholar
  63. Sanchez-Martin, L., Vallejo, A., Dick, J., & Skiba, U. M. (2008). The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils. Soil Biology & Biochemistry, 40, 141–151.Google Scholar
  64. Sanderman, J., & Baldock, J. A. (2010). Accounting for soil carbon sequestration in national inventories: A soil scientist’s perspective. Environmental Research Letter, 5, 1–6.CrossRefGoogle Scholar
  65. Scheer, C., Wassmann, R., Kienzler, K., Ibragimov, N., & Eschanov, R. (2008). Nitrous oxide emissions from fertilized, irrigated cotton (Gossypium hirsutum L.) in the Aral Sea Basin, Uzbekistan: influence of nitrogen applications and irrigation practices. Soil Biology & Biochemistry, 40, 290–301.CrossRefGoogle Scholar
  66. Singh, H. Ch. P., Rao, N. K. S., Shivashankar, K. S. & Sharma, J. (2013). Climate-Resilient Horticulture: Adaptation and Mitigation Strategies, Chapter 7.5: Carbon sequestration potential of vineyards, Springer Science, ISBN: 978-81-322-0973-7, pp. 71–72.Google Scholar
  67. Smith, P. (2004). How long before a change in soil organic carbon can be detected? Global Change Biology, 10, 1878–1883.CrossRefGoogle Scholar
  68. Smith, S. J., & Wigley, M. L. (2000). Global warming potentials: 1. Climatic implications of emissions reductions. Climatic Change, 44(4), 445–457.CrossRefGoogle Scholar
  69. Soja, G., Zehetner, F., Rampazzo-Todorovic, G., Schildberger, B., Hackl, K., Hofmann R., Burger E. & Omann, I. (2010). Wine production under climate change conditions: mitigation and adaptation options from the vineyard to the sales booth, Climate change: Agriculture, food security and human health, 9th European IFSA Symposium, pp. 1368–1378.Google Scholar
  70. Soosay, C., Fearne, A., & Dent, B. (2012). Sustainable value chain analysis – a case study of Oxford landing from “Vine to Dine”. Supply Chain Management: An International Journal, 17(1), 68–77.CrossRefGoogle Scholar
  71. Stavins, R. (1999). The cost of carbon sequestration: a revealed preference approach. The American Economic Review, 89(4), 994–1009.CrossRefGoogle Scholar
  72. Steenwerth, K. L., & Belina, K. M. (2008). Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Applied Soil Ecology, 40, 359–369.CrossRefGoogle Scholar
  73. Steenwerth, K. L., & Belina, K. M. (2010). Vineyard weed management practices influence nitrate leaching and N2O emissions. Agriculture, Ecosystems and Environment, 38(1–2), 127–131.CrossRefGoogle Scholar
  74. Steenwerth, K. L., Pierce, D. L., Carlisle, E. A., Spencer, R. G. M., & Smart, D. R. (2010). A vineyard agroecosystem: disturbance and precipitation affect soil respiration under Mediterranean conditions. Soil & Water Management & Conservation, Soil Science Society American Journal, 74(1), 231–239.CrossRefGoogle Scholar
  75. Suddick, E. C., Steenwerth, K., Garland, G. M., Smart, D. R., & Six, J. (2011). Discerning agricultural management effects on nitrous oxide emissions from convention and alternative cropping systems: a California case study. In L. Guo, A. S. Gunasekara, & L. L. McConnell (Eds.), Understanding greenhouse gas emissions from agricultural management (pp. 203–226). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  76. Treeby, M., Goldspink, B., & Nicholas, P. R. (2004). Nutrition management. In P. R. Nicholas (Ed.), Grape production series number 2. Soil, irrigation and nutrition management (pp. 186–198). Adelaide: Winetitles.Google Scholar
  77. Venterea, R. T., Burger, M., & Spokas, K. A. (2005). Nitrogen oxide and methane emissions under varying tillage and fertilizer management. Journal of Environmental Quality, 34, 1467–1477.CrossRefGoogle Scholar
  78. Williams, L. E. (2000). Grapevine water relations. In: Raisin Production Manual, Publication 3393, Univ. California, Oakland, Agricultural and Natural Resources, pp. 121-126. http://iv.ucdavis.edu/files/24436.pdf. Accessed 21 Nov 2016.
  79. Williams, D. W., Williams, L. E., Barnett, W. W., Kelley, K. M., & McKenry, M. V. (1985). Validation of a model for the growth and development of the Thompson seedless grapevine. Vegetative growth and fruit yield. American Journal of Enology and Viticulture, 36, 275–282.Google Scholar
  80. Williams, J. N., Hollander, A. D., O'Geen, A., Thrupp, L. A., Hanifin, R., Steenwerth, K., McGourty, G., & Jackson, L. E. (2011). Assessment of carbon in woody plants and soil across a vineyard-woodland landscape. Carbon Balance and Management, 6(1), 11.CrossRefGoogle Scholar
  81. Wolff, M., del Mar Alsina, M. & Smart, D. R. (2013). Conservation tillage of cover crops in vineyard soils to improve carbon sequestration and diminish greenhouse gas emissions, Wines & Vines, pp. 84–92. https://www.winesandvines.com/features/article/123789/Conservation-tillage-of-cover-crops-in-vineyard-soils-to-improve-carbon-sequestration-and-diminish-greenhouse-gas-emissions. Accessed 8 Dec 2016
  82. Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment, 557-558, 838–850.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”TimisoaraRomania
  2. 2.Victor Babes University of Medicine and PharmacyTimisoaraRomania

Personalised recommendations