Evaluation of Mercury, Lead, Arsenic, and Cadmium in Some Species of Fish in the Atrato River Delta, Gulf of Urabá, Colombian Caribbean

  • Sara E. Gallego RíosEmail author
  • Claudia M. Ramírez
  • Beatriz E. López
  • Sara M. Macías
  • Jenny Leal
  • Claudia M. Velásquez


The concentrations of mercury, lead, cadmium, and arsenic were evaluated in 96 samples, 12 by each one of the following eight fish species: snook (Centropomus undecimalis), crevalle jack (Caranx hippos), Serra Spanish mackerel (Scomberomorus brasiliensis), southern red snapper (Lutjanus purpureus), blue runner (Caranx crysos), Atlantic tarpon (Megalops atlanticus), ladyfish (Elops saurus), and Atlantic goliath grouper (Epinephelus itajara), which were collected during 1 year in the Atrato River Delta in the Gulf of Urabá, Colombian Caribbean. Three fish were caught from each of the following sites the community usually uses to catch them (known as fishing grounds): Bahía Candelaria, Bahía Marirrío, Bocas del Roto, and Bocas del Atrato. The quantification of metals was performed by microwave-induced plasma-optical emission spectrometry. The Pb concentration fluctuated from 0.672 to 3.110 mg kg−1, surpassing the maximum permissible limit (MPL = 0.3 mg kg−1) for human consumption for all species. The Hg concentration ranged between < Limit of detection and 6.303 mg kg−1, and in the crevalle jack and Atlantic tarpon, concentrations exceeded the MPL (0.5 mg kg−1). The levels of Cd and As were not significant in the studied species and did not exceed the MPL (0.05 mg kg−1).


Mercury Lead Arsenic Cadmium Fish Contamination 



The Government of Antioquia, Secretary of Agriculture, AUNAP, the Research Group in Food and Human Nutrition (GIANH), Diagnosis and Control of Pollution Research Group (GDCON), Grupo de Investigación en Sistemas Marinos y Costeros (GISMAC), Ecología Lótica: Islas, Costas y Estuarios (ELICE), and the researchers Nataly Gutiérrez, Luisa María Zapata, Alexander Taborda, Alejandro Sandoval were acknowledge for their support in the achievement of the data and logistics. This work was supported by the General System of Royalties, Universidad de Antioquia and Universidad Nacional de Santiago del Estero, in the Special Research Agreement 4600000983 signed between the Universidad de Antioquia and the Government of Antioquia: Component 1 “Lineamientos prioritarios para la formulación de un ordenamiento pesquero del Golfo de Urabá” Activity 4: Contenido de metales pesados en algunos recursos pesqueros del delta del río Atrato (Golfo de Urabá: Caribe Colombiano)”.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Adamas, D. H., & McMichael, R. H. (2007). Mercury in king mackerel, Scomberomorus cavalla, and Spanish mackerel, S. maculatus, from waters of the south-eastern USA: regional and historical trends. Marine and Freshwater Research, 58, 187–193.CrossRefGoogle Scholar
  2. Al Sayegh Petkovšek, S., Mazej Grudnik, Z., & Pokorny, B. (2012). Heavy metals and arsenic concentrations in ten fish species from the Šalek lakes (Slovenia): assessment of potential human health risk due to fish consumption. Environmental Monitoring and Assessment, 184(5), 2647–2662.CrossRefGoogle Scholar
  3. AOAC INTERNATIONAL.(1978) AOAC Official Method 977.15 Mercury in Fish .Google Scholar
  4. AOAC INTERNATIONAL.(1999) AOAC Official Method 999.11 Determination of Lead, Cadmium, Copper, Iron, and Zinc in Foods .Google Scholar
  5. Castro González, M. I., & Méndez Armenta, M. (2008). Heavy metals: implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26(3), 263–271.CrossRefGoogle Scholar
  6. Chandra Sekhar, K., Chary, N. S., Kamala, C. T., Suman Raj, D. S., & Sreenivasa Rao, A. (2004). Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish. Environment International, 29(7), 1001–1008.CrossRefGoogle Scholar
  7. Chevillot, P., Molina, A., Giraldo, L., & Molina, C. (1993). Estudio geológico e hidrológico del golfo de Urabá. Boletín Científico CIOH, 14, 78–89.Google Scholar
  8. Clémens, S., Monperrus, M., Donard, O. F. X., Amouroux, D., & Guérin, T. (2011). Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data. Analytical and Bioanalytical Chemistry, 401(9), 2699–2711.CrossRefGoogle Scholar
  9. Comisión de las Comunidades Europeas. (2006). Reglamento (CE) No 1881/2006 de la Comisión de 19 de Diciembre de 2006 por el que se Fija el Contenido Máximo de Determinados Contaminantes en los Productos Alimenticios.Google Scholar
  10. Comisión Europea. (2011). Reglamento (UE) N o 420/2011 de la Comisión de 29 de abril de 2011 que modifica el Reglamento (CE) n o 1881/2006, por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios.Google Scholar
  11. Comisión Europea. (2014). Reglamento (UE) No 488/2014 de la Comisión de 12 de mayo de 2014 que modifica el Reglamento (CE) n°1881/2006 por lo que respecta al contenido máximo de cadmio en los productos alimenticios.Google Scholar
  12. Doadrio Villarejo, A. L. (2004). Ecotoxicología y acción toxicológica del mercurio. Número de la Real Academia Nacional de Farmacia, 70, 933–959.Google Scholar
  13. El Moselhy, K. M., Othman, A. I., Abd El Azem, H., Metwally, E., & M. E. a. (2014). Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egyptian Journal of Basic and Applied Sciences, 1(2), 1–9.Google Scholar
  14. Emmanuel, B. E., & Samuel, O. B. (2009). Comparative study of mercury accumulation in some brackish water fishes in a tropical lagoon and its adjacent creek in south western Nigeria. African Journal of Environmental Science and Technology.
  15. FAO, & Fisheries and Aquaculture Department. (2016). The State of World Fisheries and Aquaculture (SOFIA). Roma.Google Scholar
  16. FAO/WHO(1972)Evaluation of certain food additives and the contaminants mercury, lead, and cadmium . Ginebra: WHO Technical Report Series No. 505.Google Scholar
  17. FAO/WHO.(1989) Evaluation of certain food additives and contaminants. Ginebra.Google Scholar
  18. Faroon, O., Ashizawa, A., Wright, S., Tucker, P., Jenkins, K., Ingerman, L., & Rudisill, C. (2012). Toxicological profile for cadmium. U.S. Department of Health and Human Services. Atlanta.
  19. Gallego Ríos, S. E., Peñuela, G. A., & Ramírez Botero, C. M. (2017). Method validation for the determination of mercury, cadmium, lead, arsenic, copper, iron, and zinc in fish through microwave-induced plasma optical emission spectrometry (MIP OES). Food Analytical Methods.
  20. Herrero Fernández, Z., Valcárcel Rojas, L. A., Montero Álvarez, A., Estevez Álvarez, J. R., Araújo dos Santos, J., Pupo González, I., et al. (2014). Application of cold vapor-atomic absorption (CVAAS) spectrophotometry and inductively coupled plasma-atomic emission spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control, 1–6.Google Scholar
  21. Huang, S. W., Chen, C. Y., & Chen, M. H. (2008). Total and organic hg in fish from the reservoir of a chlor-alkali plant in Tainan, Taiwan. Journal of Food and Drug Analysis, 16(2), 75–80.Google Scholar
  22. INVEMAR, & Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2008). Diagnóstico y evaluación de la calidad de las aguas marinas y costeras del Caribe y Pacífico Colombianos. Colombia.Google Scholar
  23. INVEMAR, & Ministerio de Ambiente y Desarrollo Sostenible. (2014). Diagnóstico y evaluación de la calidad de las aguas marinas y costeras del Caribe y Pacífico Colombianos. Colombia.Google Scholar
  24. Jayaprakash, M., Kumar, R. S., Giridharan, L., Sujitha, S. B., Sarkar, S. K., & Jonathan, M. P. (2015). Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: a metropolitan city effect. Ecotoxicology and Environmental Safety, 120, 243–255.CrossRefGoogle Scholar
  25. de Jesus, I. S., da Silva Medeiro, R. L., Cestari, M. M., de Almeida Bezerra, M., & de Mello Affonso, P. R. A. (2014). Analysis of metal contamination and bioindicator potential of predatory fish species along Contas River basin in northeastern Brazil. Bulletin of Environmental Contamination and Toxicology.
  26. Joyeux, J. C., Campanha Filho, E. A., & De Jesus, H. C. (2004). Trace metal contamination in estuarine fishes from Vitória Bay, ES, Brazil. Brazilian Archives of Biology and Technology.
  27. Khaled, A. (2009). Trace metals in fish of economic interest from the west of Alexandria Egypt. Chemistry and Ecology.
  28. Klaassen, C. D. (2013). The basic science of poisons. Casarett and Doull’s Toxicology (Eighth ed.). Kansas: Mc Graw Hill.Google Scholar
  29. Leung, H. M., Leung, A. O. W., Wang, H. S., Ma, K. K., Liang, Y., Ho, K. C., et al. (2014). Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD), China. Marine Pollution Bulletin.
  30. Leyva Cambar, L., Domínguez Guzmán, J., Pérez Tamames, Y., Labrada Santo, J. A., Revuelta Llano, D., & González Salas, R. (2010). Estudio comparativo de dos desechos pesqueros provenientes del municipio Bayamo, Cuba. Revista Científica UDO Agrícola, 10(1), 119–122.Google Scholar
  31. Liao, P.-Y., Liu, C.-W., & Liu, W.-Y. (2016). Bioaccumulation of mercury and polychlorinated dibenzo-p-dioxins and dibenzofurans in salty water organisms. Environmental Monitoring and Assessment.
  32. Licata, P., Trombetta, D., Cristani, M., Naccari, C., Martino, D., Calò, M., & Naccari, F. (2005). Heavy metals in liver and muscle of bluefin tuna (Thunnus thynnus) caught in the straits of Messina (Sicily, Italy). Environmental Monitoring and Assessment.
  33. Liu, J., Goyer, R. A., & Waalkes, M. P. (2008a). Toxic effects of metals - mercury. In C. D. Klaassen (Ed.), Toxicology the basic science of poison (7th ed., pp. 947–950). Kansas City: McGraw-Hill.Google Scholar
  34. Liu, J., Goyer, R. A., & Waalkes, M. P. (2008b). Toxic effects of metals - cadmium. In C. D. Klaassen (Ed.), Toxicology the basic science of poison (7th ed., pp. 940–942). Kansas City: McGraw-Hill.Google Scholar
  35. López Barrera, E. A., & Barragán Gonzalez, R. G. (2016). Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans. Journal of Toxicology and Environmental Health, Part A.
  36. Lozada Zarate, E. J., Monks, S., Pulido Flores, G., Martínez, A. J. G., & García, F. P. (2007). Determinación de metales pesados en Cyprinus carpio en la laguna de Metztitlán, Hidalgo, México. In IV Foro de Investigadores por la Conservación y II Simposio de Áreas Naturales Protegidas Del Estado De Hidalgo (pp. 32–39). Pachuca: Universidad Autónoma del Estado de Hidalgo.Google Scholar
  37. Malik, N., Biswas, A. K., Qureshi, T. A., Borana, K., & Virha, R. (2010). Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environmental Monitoring and Assessment, 160(1–4), 267–276.CrossRefGoogle Scholar
  38. Mansilla-Rivera, I., & Rodríguez-Sierra, C. J. (2011). Metal levels in fish captured in Puerto Rico and estimation of risk from fish consumption. Archives of Environmental Contamination and Toxicology.
  39. Medeiros, R. J., dos Santos, L. M. G., Freire, A. S., Santelli, R. E., Braga, A. M. C. B., Krauss, T. M., & Jacob, S. do C. (2012). Determination of inorganic trace elements in edible marine fish from Rio de Janeiro state, Brazil. Food Control.
  40. Medeiros, R. J., dos Santos, L. M. G., Goncalves, J. M., Braga, A. M. C. B., Krauss, T. M., & Jacob, S. do C. (2014). Comparison of the nutritional and toxicological reference values of trace elements in edible marine fish species consumed by the population in Rio De Janeiro state, Brazil. Toxicology Reports.
  41. Ministério da Saúde.(2013) RESOLUÇÃO DA DIRETORIA COLEGIADA - RDC No 24/2011 Brasil.Google Scholar
  42. Ministerio de Salud y Protección Social de Colombia. Resolución 000122 de 2012 (2012). Colombia: Ministerio de Salud y Protección Social.Google Scholar
  43. Mok, W. J., Senoo, S., Itoh, T., Tsukamasa, Y., Kawasaki, K. I., & Ando, M. (2012). Assessment of concentrations of toxic elements in aquaculture food products in Malaysia. Food Chemistry.
  44. Mol, J. H., Ramlal, J. S., Lietar, C., & Verloo, M. (2001). Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America. Environmental Research, 86(2), 183–197.CrossRefGoogle Scholar
  45. Morgano, M. A., Rabonato, L. C., Milani, R. F., Miyagusku, L., & Balian, S. C. (2011). Assessment of trace elements in fishes of Japanese foods marketed in Sao Paulo (Brazil). Food Control.
  46. Muñoz Vallejo, L. F., García Ardila, L. F., Gazquez, R., & M. de los A. (2012). Perception of health harm and usefulness of protection measures in people occupationally exposed to mercury in gold mining. La Sallista De Investigación, 9(1), 53–61.Google Scholar
  47. Nava Ruíz, C., & Méndez Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Instituto Nacional de Neurología y Neurocirugía, 16(3), 140–147.Google Scholar
  48. Olivero Verbel, J., & Johnson Restrepo, B. (2002). El lado gris de la mineria del oro: La contaminacion con mercurio en el norte de Colombia. Cartagena: Universidad de Cartagena.Google Scholar
  49. Olivero Verbel, J., Caballero Gallardo, K., & Torres Fuentes, N. (2009). Assessment of mercury in muscle of fish from Cartagena Bay, a tropical estuary at the north of Colombia. International Journal of Environmental Health Research, 19(5), 343–355.CrossRefGoogle Scholar
  50. Ortiz, E., Sánchez, A., Vivas, A., Rodriguez, H., Giraldo, M., & Timagene, J. (2003). Caracterización y zonificación de los manglares del Golfo de Urabá. CORPOURABA: Departamento de Antioquia.Google Scholar
  51. Patterson, J. (2002). Introduction--comparative dietary risk: balance the risk and benefits of fish consumption. Comments on Toxicology.
  52. Psoma, A. K., Pasias, I. N., Rousis, N. I., Barkonikos, K. A., & Thomaidis, N. S. (2014). Development, validation and accreditation of a method for the determination of Pb, Cd, Cu and As in seafood and fish feed samples. Food chemistry.
  53. Rubio, C., Gutiérrez, A. ., Martín Izquierdo, R. ., Revert, C., Lozano, G., & Hardisson, A. (2004). El plomo como contaminante alimentario. Toxicol, 72–80.Google Scholar
  54. Ruiz Muñoz, N., Marquez Garcia, G. J., Torres Acevedo, C. A., & Suaza Palacio, S. A. (2012). El Urabá Antioqueño: un mar de oportunidades y potencialidades: Perfil subregional. Gobernación de Antioquia: Urabá.Google Scholar
  55. Siavash Saei-Dehkordi, S., & Fallah, A. A. (2011). Determination of copper, lead, cadmium and zinc content in commercially valuable fish species from the Persian Gulf using derivative potentiometric stripping analysis. Microchemical Journal, 98(1), 156–162.CrossRefGoogle Scholar
  56. Squadrone, S., Prearo, M., Brizio, P., Gavinelli, S., Pellegrino, M., Scanzio, T., et al. (2013). Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian rivers. Chemosphere, 90(2), 358–365.CrossRefGoogle Scholar
  57. Thera, J. C., & Rumbold, D. G. (2014). Biomagnification of mercury through a subtropical coastal food web off Southwest Florida. Environmental Toxicology and Chemistry.
  58. Thiyagarajan, D., Dhaneesh, K. V., Kumar, T. T. A., Kumaresan, S., & Balasubramanian, T. (2012). Metals in fish along the southeast coast of India. Bulletin of Environmental Contamination and Toxicology.
  59. Valdivia Infantas, M. M. (2006). Lead poisoning. Revista de la Sociedad Peruana de Medicina Interna, 18(1), 1–6.Google Scholar
  60. Voegborlo, R. B., & Adimado, A. A. (2010). Total mercury distribution in different fish species representing different trophic levels from the Atlantic coast of Ghana. Journal of Science and Technology, 30(1), 1–9.Google Scholar
  61. Voegborlo, R. B., Adimado, A. A., & Ephraim, J. H. (2007). Total mercury distribution in different tissues of frigate tuna (Auxis thazard thazard) from the Atlantic coastal waters of Ghana, Gulf of Guinea. Environmental Monitoring and Assessment.
  62. Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the Total Environment.
  63. World Health Organization. (2015). Agents Classified By The Iarc Monographs, Volumes 1–122.Resource document. International Agency for Research on Cancer (IARC). Accessed 23 March 2016.
  64. Zhang, L., Shi, Z., Zhang, J., Jiang, Z., Wang, F., & Huang, X. (2015). Spatial and seasonal characteristics of dissolved heavy metals in the east and west Guangdong coastal waters, South China. Marine Pollution Bulletin, 95(1), 419–426.CrossRefGoogle Scholar
  65. Zhu, F., Qu, L., Fan, W., Wang, A., Hao, H., Li, X., & Yao, S. (2015). Study on heavy metal levels and its health risk assessment in some edible fishes from Nansi Lake, China. Environmental Monitoring and Assessment.
  66. Zuluaga Rodríguez, J., Gallego Ríos, S. E., & Ramírez Botero, C. M. (2015). Content of Hg, Cd, Pb and As in fish species: a review. VIATE, 22(2), 148–159.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Grupo Impacto de los Componentes Alimentarios en la Salud (ICAS), Escuela de Nutrición y DietéticaUniversidad de AntioquiaMedellínColombia
  2. 2.Grupo de investigación en Socioantropología de la AlimentaciónUniversidad de Antioquia UdeAMedellínColombia
  3. 3.Instituto de Ciencia y Tecnología de Alimentos, Facultad de Agronomía y AgroindustriasUniversidad Nacional de Santiago del EsteroSantiago del EsteroArgentina
  4. 4.Grupo de Investigación en Sistemas Marinos y Costeros (GISMAC), Corporación Académica AmbientalUniversidad de AntioquiaMedellínColombia
  5. 5.Research Group in Food and Human Nutrition (GIANH)Universidad de Antioquia UdeAMedellínColombia

Personalised recommendations