Advertisement

Water, Air, & Soil Pollution

, 229:304 | Cite as

Solubilization of Nitrogen Heterocyclic Compounds Using Different Surfactants

  • Zuoyi Yang
  • Jiahao Cui
  • Bo Yin
Article
  • 82 Downloads

Abstract

In order to develop surfactant-enhanced remediation for nitrogen heterocyclic compounds (NHCs) (aniline, indole, and quinolone), the solubilization properties of micellar solutions of five surfactants, namely sodium dodecyl sulfate (SDS), rhamnolipid (RL), polysorbate (Tween 80), sorbitan monolaurate (Span 20), and iso-octyl phenoxy polyethoxy ethanol (TX-100) were investigated in this work. The solubilization capacities were quantified using critical micelle concentration (CMC) as well as thermodynamic and kinetic experiments. Besides, nuclear magnetic resonance (1H NMR) spectra were used to infer the locus of NHCs solubilized by SDS and TX-100. The results from the properties of five surfactants indicated that CMC was affected by temperature, while the micellization was spontaneous and could be both endothermic and exothermic based on the type of surfactant and temperature. Furthermore, the difference in compensation temperature was caused by different solubilization mechanism for various surfactants. The solubilization results showed that the solubilization of NHCs in the surfactant solutions followed a pseudo-first-order kinetic model. Meanwhile, the change in proton’s chemical shift depended on the structure of NHCs and the solubilization ability of surfactants. Finally, the orthogonal experiment (L16(43)) was elementarily designed to optimize the solubilization conditions of indole and the results showed that RL could be a better choice for solubilizing NHCs.

Graphical Abstract

Keywords

Solubilization Nitrogen heterocyclic compounds Surfactants Micelle 

Notes

Acknowledgements

The authors appreciate the financial support provided through the Science and Technology Project of Guangdong Province, China (Grant No.: 2014A020216038).

References

  1. Altomare, M., Chiarello, G. L., Costa, A., Guarino, M., & Selli, E. (2012). Photocatalytic abatement of ammonia in nitrogen-containing effluents. Chemical Engineering Journal, 191, 394–401.CrossRefGoogle Scholar
  2. And, M. R. I. Y. (2000). Chiral recognition thermodynamics of β-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy-entropy compensation effect. Journal of the American Chemical Society, 122, 4418–4435.CrossRefGoogle Scholar
  3. Bernardez, L. A. (2008). Investigation on the locus of solubilization of polycyclic aromatic hydrocarbons in non-ionic surfactant micelles with 1H NMR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324(1-3), 71–78.CrossRefGoogle Scholar
  4. Bezza, F. A., & Chirwa, E. M. (2016). Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere, 144, 635–644.CrossRefGoogle Scholar
  5. Bezza, F. A., & Chirwa, E. M. (2017). Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. Journal of Hazardous Materials, 321, 218–227.CrossRefGoogle Scholar
  6. Bhadani, A., Okano, T., Ogura, T., Misono, T., Sakai, K., Abe, M., et al. (2016). Structural features and surfactant properties of core–shell type micellar aggregates formed by gemini piperidinium surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494, 147–155.CrossRefGoogle Scholar
  7. Blagojević, S. N., Blagojević, S. M., & Pejić, N. D. (2016). Performance and efficiency of anionic dishwashing liquids with amphoteric and nonionic surfactants. Journal of Surfactants and Detergents, 19, 363–372.CrossRefGoogle Scholar
  8. Chatterjee, A. M. S. P., Sanyal, S. K., et al. (2001). Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements. The Journal of Physical Chemistry. B, 105, 12823–12831.CrossRefGoogle Scholar
  9. Chauhan, S., & Sharma, K. (2014). Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study. The Journal of Chemical Thermodynamics, 71, 205–211.CrossRefGoogle Scholar
  10. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., et al. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598.CrossRefGoogle Scholar
  11. Damrongsiri, S., Tongcumpou, C., & Sabatini, D. A. (2013). Partition behavior of surfactants, butanol, and salt during application of density-modified displacement of dense non-aqueous phase liquids. Journal of Hazardous Materials, 248-249, 261–267.CrossRefGoogle Scholar
  12. Galán, J. J., & Rodríguez, J. R. (2009). Thermodynamic study of the process of micellization of long chain alkyl pyridinium salts in aqueous solution. Journal of Thermal Analysis and Calorimetry, 101, 359–364.CrossRefGoogle Scholar
  13. Galan-Jimenez, M. C., Gomez-Pantoja, E., Morillo, E., & Undabeytia, T. (2015). Solubilization of herbicides by single and mixed commercial surfactants. The Science of the Total Environment, 538, 262–269.CrossRefGoogle Scholar
  14. Hassini, L., Bettaieb, E., Desmorieux, H., Torres, S. S., & Touil, A. (2015). Desorption isotherms and thermodynamic properties of prickly pear seeds. Industrial Crops and Products, 67, 457–465.CrossRefGoogle Scholar
  15. Hierrezuelo, J., Molina-Bolívar, J., & Ruiz, C. (2014). An energetic analysis of the phase separation in non-ionic surfactant mixtures: the role of the headgroup structure. Entropy, 16, 4375–4391.CrossRefGoogle Scholar
  16. Ishtikhar, M., Ali, M. S., Atta, A. M., Al-Lohedan, H. A., Nigam, L., Subbarao, N., et al. (2015). Interaction of biocompatible natural rosin-based surfactants with human serum albumin: a biophysical study. Journal of Luminescence, 167, 399–407.CrossRefGoogle Scholar
  17. Joy, S., Rahman, P. K. S. M., & Sharma, S. (2017). Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chemical Engineering Journal, 317, 232–241.CrossRefGoogle Scholar
  18. Kuklin, R. N. (2004). The stability limits of the surface phases at the polarized Interface of a liquid electrode with an electrolyte solution. Entropy, 6, 233–243.CrossRefGoogle Scholar
  19. Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968.CrossRefGoogle Scholar
  20. Lee, N.-M., & Lee, B.-H. (2016). Thermodynamics on the micellization of various pure and mixed surfactants: effects of head- and tail-groups. The Journal of Chemical Thermodynamics, 95, 15–20.CrossRefGoogle Scholar
  21. Liang, X., Guo, C., Liao, C., Liu, S., Wick, L. Y., Peng, D., et al. (2017). Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Environmental Pollution, 225, 129–140.CrossRefGoogle Scholar
  22. Lim, S. J., & Fox, P. (2014). Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model. The Science of the Total Environment, 470-471, 348–355.CrossRefGoogle Scholar
  23. Liu, G., Gu, D., Liu, H., Ding, W., & Li, Z. (2011). Enthalpy-entropy compensation of ionic liquid-type Gemini imidazolium surfactants in aqueous solutions: a free energy perturbation study. Journal of Colloid and Interface Science, 358, 521–526.CrossRefGoogle Scholar
  24. Liu, Y., Zeng, G., Zhong, H., Wang, Z., Liu, Z., Cheng, M., et al. (2017). Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? Journal of Hazardous Materials, 322, 394–401.CrossRefGoogle Scholar
  25. F. Lowe, D. L. Oubre & Ward, C. (1999). Surfactants and cosolvents for NAPL remediation: a technology practices manual. Boca Raton: CRC PressGoogle Scholar
  26. Pacwa-Plociniczak, M., Plaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). Environmental applications of biosurfactants: recent advances. International Journal of Molecular Sciences, 12(1), 633.CrossRefGoogle Scholar
  27. Padoley, K. V., Mudliar, S. N., & Pandey, R. A. (2008). Heterocyclic nitrogenous pollutants in the environment and their treatment options--an overview. Bioresource Technology, 99, 4029–4043.CrossRefGoogle Scholar
  28. Reza, J., & Trejo, A. (2004). Temperature dependence of the infinite dilution activity coefficient and Henry’s law constant of polycyclic aromatic hydrocarbons in water. Chemosphere, 56, 537–547.CrossRefGoogle Scholar
  29. Rosas, J. M., Vicente, F., Santos, A., & Romero, A. (2011). Enhancing p-cresol extraction from soil. Chemosphere, 84, 260–264.CrossRefGoogle Scholar
  30. Schacht, V. J., Grant, S. C., Escher, B. I., Hawker, D. W., & Gaus, C. (2016). Solubility enhancement of dioxins and PCBs by surfactant monomers and micelles quantified with polymer depletion techniques. Chemosphere, 152, 99–106.CrossRefGoogle Scholar
  31. Sun, F., Yu, Q., Zhu, J., Lei, L., Li, Z., & Zhang, X. (2015). Measurement and ANN prediction of pH-dependent solubility of nitrogen-heterocyclic compounds. Chemosphere, 134, 402–407.CrossRefGoogle Scholar
  32. Viamajala, S., Peyton, B. M., Richards, L. A., & Petersen, J. N. (2007). Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions. Chemosphere, 66, 1094–1106.CrossRefGoogle Scholar
  33. Wan, Z. L., Wang, L. Y., Wang, J. M., Yuan, Y., & Yang, X. Q. (2014). Synergistic foaming and surface properties of a weakly interacting mixture of soy glycinin and biosurfactant stevioside. Journal of Agricultural and Food Chemistry, 62, 6834–6843.CrossRefGoogle Scholar
  34. Wang, T.-Z., Mao, S.-Z., Miao, X.-J., Zhao, S., Yu, J.-Y., & Du, Y.-R. (2001). 1H NMR study of mixed micellization of sodium dodecyl sulfate and triton X-100. Journal of Colloid and Interface Science, 241, 465–468.CrossRefGoogle Scholar
  35. Xing, X., Zhu, X., Li, H., Jiang, Y., & Ni, J. (2012). Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode. Chemosphere, 86, 368–375.CrossRefGoogle Scholar
  36. Yang, Z., Zhou, J., Xu, Y., Zhang, Y., Luo, H., Chang, K. L., & Wang, Y. (2017). Analysis of the metabolites of indole degraded by an isolated Acinetobacter pittii L1. BioMed Research International, 2017, 1–10.Google Scholar
  37. Yu, H., Huang, G., Wei, J., & An, C. (2011). Solubilization of mixed polycyclic aromatic hydrocarbons through a rhamnolipid biosurfactant. Journal of Environment Quality, 40, 477.CrossRefGoogle Scholar
  38. Zhang, Q., Gao, Z., Xu, F., & Tai, S. (2012). Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants: an electrical conductivity study. Journal of Colloid and Interface Science, 371, 73–81.CrossRefGoogle Scholar
  39. Zhou, W., & Zhu, L. (2004). Solubilization of pyrene by anionic-nonionic mixed surfactants. Journal of Hazardous Materials, 109, 213–220.CrossRefGoogle Scholar
  40. Zhou, W., Yang, J., Lou, L., & Zhu, L. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 159, 1198–1204.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringGuangdong University of TechnologyGuangzhouChina

Personalised recommendations