Water, Air, & Soil Pollution

, 229:295 | Cite as

Ibuprofen Sorption to Coastal Plain Soils

  • Siddhartha MitraEmail author
  • Beau Benfield


Ibuprofen is commonly detected in onsite wastewater systems. Such onsite systems are abundant in coastal plain areas, globally. Coastal plain soils have unique mineralogy. Rapid subsurface transport may occur in coastal plain soils due to their characteristic permeable soils and seasonally high water tables. Laboratory batch sorption studies were conducted on Norfolk, Goldsboro, and Lynchburg, three archetypical coastal plain soils, with varying physicochemical properties, to evaluate ibuprofen sorption. Sorption distribution coefficients (KD values) across all three soils ranged from 0.63 to 1.26 L kg−1. Sorption of ibuprofen to Norfolk and Goldsboro soils was able to be modeled using a Freundlich isotherm; however, the Lynchburg soil, was not, likely due to soil heterogeneity. In general, sorption of ibuprofen was influenced by soil organic carbon content.


Ibuprofen Sorption Soils Coastal plain North Carolina 



East Carolina University’s Division of Research, Economic Development, and Engagement is acknowledged for providing funding to BB as part of ECU’s East-West Collaborative Research Grant.

Supplementary material

11270_2018_3900_MOESM1_ESM.docx (2.9 mb)
ESM 1 (DOCX 3009 kb)


  1. Avdeef, A., Box, K. J., Comer, J. E. A., Hibbert, C., & Tam, K. Y. (1998). Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharmaceutical Research, 15, 209–215.CrossRefGoogle Scholar
  2. Baker, J. R., Mihelcic, J. R., Luehrs, D. C., & Hickey, J. P. (1997). Evaluation of estimation methods for organic carbon normalized sorption coefficients. Water Environment Research, 69, 136–145.CrossRefGoogle Scholar
  3. Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I Groundwater. The Science of the Total Environment, 402, 192–200.CrossRefGoogle Scholar
  4. Becking, L. B., Kaplan, I. R., & Moore, D. (1960). Limits of the natural environment in terms of pH and oxidation-reduction potentials. The Journal of Geology, 68, 243–284.CrossRefGoogle Scholar
  5. Behera, S. K., Oh, S. Y., & Park, H. S. (2012). Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. International Journal of Environmental Science and Technology, 9, 85–94.CrossRefGoogle Scholar
  6. Benfield, B. (2017). Sorption of ibuprofen to Coastal Plain Soils. MS Thesis. Department of Geological Sciences, East Carolina University, Greenville, NC.Google Scholar
  7. Cho, H. H., Huang, H., & Schwab, K. (2011). Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir, 27, 12960–12967.CrossRefGoogle Scholar
  8. Daniels, R. B., Gamble, E. E., & Cady, J. G. (1970). Some relations among Coastal Plain soils and geomorphic surfaces in North Carolina. Soil Science Society of America Journal, 34, 648–653.CrossRefGoogle Scholar
  9. Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, 107, 907–938.CrossRefGoogle Scholar
  10. Del Rosario, K. L., Mitra, S., Humphrey, C. P., & O'Driscoll, M. A. (2014). Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer. Science of the Total Environment, 487, 216–223.CrossRefGoogle Scholar
  11. Dougherty, J. A., Swarzenski, P. W., Dinicola, R. S., & Reinhard, M. (2010). Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington. Journal of Environmental Quality, 39, 1173–1180.CrossRefGoogle Scholar
  12. Duffera, M., White, J. G., & Weisz, R. (2007). Spatial variability of southeastern US Coastal Plain soil physical properties: implications for site-specific management. Geoderma, 137, 327–339.CrossRefGoogle Scholar
  13. Ericson, H., Thorsén, G., & Kumblad, L. (2010). Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquatic Toxicology, 99, 223–231.CrossRefGoogle Scholar
  14. Estevez, E., Hernandez-Moreno, J. M., Fernandez-Vera, J. R., & Palacios-Diaz, M. P. (2014). Ibuprofen adsorption in four agricultural volcanic soils. Science of the Total Environment, 468, 406–414.CrossRefGoogle Scholar
  15. Gerstl, Z. (1990). Estimation of organic chemical sorption by soils. Journal of Contaminant Hydrology, 6, 357–375.CrossRefGoogle Scholar
  16. Guedidi, H., Reinert, L., Lévêque, J. M., Soneda, Y., Bellakhal, N., & Duclaux, L. (2013). The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen. Carbon, 54, 432–443.CrossRefGoogle Scholar
  17. Halling-Sørensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lützhøft, H. H., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36, 357–393.CrossRefGoogle Scholar
  18. Han, S., Choi, K., Kim, J., Ji, K., Kim, S., Ahn, B., & Giesy, J. P. (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology, 98, 256–264.CrossRefGoogle Scholar
  19. Hansch, C., Rockwell, S. D., Jow, P. Y., Leo, A., & Steller, E. E. (1977). Substituent constants for correlation analysis. Journal of Medicinal Chemistry, 20, 304–306.CrossRefGoogle Scholar
  20. Heath, R. C. (1983). Basic ground-water hydrology. US Geological Survey.Google Scholar
  21. Humphrey Jr, C. P. (2009). Controls on septic system wastewater treatment and shallow groundwater quality in coastal North Carolina. East Carolina University.Google Scholar
  22. Karickhoff, S. W. (1984). Organic pollutant sorption in aquatic systems. Journal of Hydraulic Engineering, 110, 707–735.CrossRefGoogle Scholar
  23. Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, 13, 241–248.CrossRefGoogle Scholar
  24. Katsoyiannis, A., & Samara, C. (2007). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research-International, 14, 284–292.CrossRefGoogle Scholar
  25. Kenaga, E. E., & Goring, C. A. I. (1980). Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. Aquatic Toxicology, 707, 78–115.CrossRefGoogle Scholar
  26. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: a national reconnaissance. Environmental Science & Technology, 36, 1202–1211.CrossRefGoogle Scholar
  27. Langenhoff, A., Inderfurth, N., Veuskens, T., Schraa, G., Blokland, M., Kujawa-Roeleveld, K., & Rijnaarts, H. (2013). Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac from wastewater. BioMed Research International. Scholar
  28. Maamar, M. B., Lesné, L., Hennig, K., Desdoits-Lethimonier, C., Kilcoyne, K. R., Coiffec, I., & Antignac, J. P. (2017). Ibuprofen results in alterations of human fetal testis development. Scientific Reports, 7, 44184.CrossRefGoogle Scholar
  29. NC DEHNR (1996). On-site wastewater management: guidance manual. Division of Environmental Health, On-Site Wastewater Section, Raleigh, NC. Accessed 27 Mar 2018.
  30. Richardson, M. L., & Bowron, J. M. (1985). The fate of pharmaceutical chemicals in the aquatic environment. Journal of Pharmacy and Pharmacology, 37, 1–12.CrossRefGoogle Scholar
  31. Sangster, J. (1989). Octanol-water partition coefficients of simple organic compounds. Journal of Physical and Chemical Reference Data, 18, 1111–1229.CrossRefGoogle Scholar
  32. Schaider, L. A., Rodgers, K. M. & Rudel, R. A. (2017). Environmental Science & Technology, 51, 7304–7317.CrossRefGoogle Scholar
  33. Scheytt, T., Mersmann, P., Lindstädt, R., & Heberer, T. (2005a). Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere, 60, 245–253.CrossRefGoogle Scholar
  34. Scheytt, T., Mersmann, P., Lindstädt, R., & Heberer, T. (2005b). 1-Octanol/water partition coefficients of 5 pharmaceuticals from human medical care: carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water, Air, and Soil Pollution, 165, 3–11.CrossRefGoogle Scholar
  35. Scheytt, T. J., Mersmann, P., & Heberer, T. (2006). Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology, 83, 53–69.CrossRefGoogle Scholar
  36. Schwarzenbach, R. P., & Westall, J. (1981). Transport of non-polar organic pollutants in a river water–groundwater infiltration system: a systematic approach. Studies in Environmental Science, 17, 569–574.CrossRefGoogle Scholar
  37. Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (1993). Organic acids and bases: acidity constant and partitioning behavior. Environmental Organic Chemistry, 245–274.Google Scholar
  38. Soller, D. R., & Mills, H. H. (1991). Surficial geology and geomorphology. In: W.J. Horton, V.A. Zullo (Eds.), The geology of the Carolinas. Carolina geological society fifteenth anniversary volume. (pp. 290–308). KNoxville: University of Tennessee Press.Google Scholar
  39. Stuckey, J. L. (1965). North Carolina: its geology and mineral resources. Department of Conservation and Development.Google Scholar
  40. Styszko, K., Sosnowska, K., Wojtanowicz, P., Gołaś, J., Gorecki, J., & Macherzynski, M. (2010). Sorption of ibuprofen on sediments from the Dobczyce (Southern Poland) drinking water reservoir. Archives of Environmental Protection, 36, 81–91.Google Scholar
  41. Ternes, T., Bonerz, M., & Schmidt, T. (2001). Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 938, 175–185.CrossRefGoogle Scholar
  42. Tesoriero, A. J., Spruill, T. B., & Eimers, J. L. (2004). Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: implications for aquifer susceptibility. Applied Geochemistry, 19, 1471–1482.CrossRefGoogle Scholar
  43. Tixier, C., Singer, H. P., Oellers, S., & Müller, S. R. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental science & technology, 37, 1061–1068.CrossRefGoogle Scholar
  44. USDA. (2005). Accessed 27 Mar 2018.
  45. US EPA. (2002). Onsite wastewater treatment systems manual. Report #EPA/625/R-00/008. Washington, DC: Office of Water and Office of Research and Development. Google Scholar
  46. Vulava, V. M., Cory, W. C., Murphey, V. L., & Ulmer, C. Z. (2016). Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water. The Science of the Total Environment, 565, 1063–1070.CrossRefGoogle Scholar
  47. Warren, N., Allan, I. J., Carter, J. E., House, W. A., & Parker, A. (2003). Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Applied Geochemistry, 18, 159–194.CrossRefGoogle Scholar
  48. Xu, J., Wu, L., & Chang, A. C. (2009). Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77, 1299–1305.CrossRefGoogle Scholar
  49. Yalkowsky, S. H., & Dannenfelser, R. M. (1992). Aquasol database of aqueous solubility. Tucson: College of Pharmacy, University of Arizona.Google Scholar
  50. Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., & Sekizawa, J. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43, 351–362.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geological Sciences (MS558)East Carolina UniversityGreenvilleUSA

Personalised recommendations