Advertisement

Efficient Photocatalytic Reduction of CO2 Present in Seawater into Methanol over Cu/C-Co-Doped TiO2 Nanocatalyst Under UV and Natural Sunlight

  • Yasar N. Kavil
  • Yasser A. Shaban
  • Radwan Kh. Al Farawati
  • Mohamed I. Orif
  • Mousa Zobidi
  • Shahed U. M. Khan
Article

Abstract

Photocatalytic reduction of CO2 in seawater into chemical fuel, methanol (CH3OH), was achieved over Cu/C-co-doped TiO2 nanoparticles under UV and natural sunlight. Photocatalysts with different Cu loadings (0, 0.5, 1, 3, 5, and 7 wt%) were synthesized by the sol–gel method and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. Co-doping with C and Cu into TiO2 remarkably promoted the photocatalytic production of CH3OH. This improvement was attributed to lowering of bandgap energy, specific catalytic effect of Cu for CH3OH formation, and the minimization of photo-generated carrier recombination. Co-doped TiO2 with 3.0 wt% Cu was found to be the most active catalyst, giving a maximum methanol yield rate of 577 μmol g-cat−1 h−1 under illumination of UV light, which is 5.3-fold higher than the production rate over C-TiO2 and 7.4 times the amount produced using Degussa P25 TiO2. Under natural sunlight, the maximum rate of the photocatalytic production of CH3OH using 3.0 wt% Cu/C-TiO2 was found to be 188 μmol g-cat−1 h−1, which is 2.24 times higher than that of C-TiO2, whereas, no CH3OH was observed for P25.

Keywords

CO2 photoreduction Cu/C-co-doped TiO2 Methanol Copper Seawater 

Notes

Acknowledgments

The author, Yasar N Kavil, is grateful to the Deanship of Graduate Studies, King Abdulaziz University, for providing a Ph.D. fellowship.

Supplementary material

11270_2018_3881_MOESM1_ESM.docx (848 kb)
ESM 1 (DOCX 848 kb)

References

  1. Abbasizadeh, S., Keshtkar, A. R., & Mousavian, M. A. (2013). Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chemical Engineering Journal, 220, 161–171.CrossRefGoogle Scholar
  2. Adachi, K., Ohta, K., & Mizuno, T. (1994). Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53(2), 187–190.CrossRefGoogle Scholar
  3. Al-Azri, Z. H., Chen, W., Chan, A., Jovic, V., Ina, T., Idriss, H., & Waterhouse, G. I. (2015). The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. Journal of Catalysis, 329, 355–367.CrossRefGoogle Scholar
  4. Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y., & Honda, M. (1997). Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B, 101(14), 2632–2636.CrossRefGoogle Scholar
  5. Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S. G., Ichihashi, Y., Park, D. R., Suzuki, Y., Koyano, K., & Tatsumi, T. (1998). Photocatalytic reduction of CO2 with H2O on ti-MCM-41 and ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 44(1), 327–332.CrossRefGoogle Scholar
  6. Ao, Y., Xu, J., & Fu, D. (2009). Study on the effect of different acids on the structure and photocatalytic activity of mesoporous titania. Applied Surface Science, 256(1), 239–245.CrossRefGoogle Scholar
  7. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science (New York, N.Y.), 293(5528), 269–271.  https://doi.org/10.1126/science.1061051.CrossRefGoogle Scholar
  8. Benniston, A. C., & Harriman, A. (2008). Artificial photosynthesis. Materials Today, 11(12), 26–34.CrossRefGoogle Scholar
  9. Borole, A. P., Reguera, G., Ringeisen, B., Wang, Z. W., Feng, Y., & Kim, B. H. (2011). Electroactive biofilms: current status and future research needs. Energy & Environmental Science, 4, 4813–4834.CrossRefGoogle Scholar
  10. Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18866–18870.CrossRefGoogle Scholar
  11. Chen, H., Shao, Y., Xu, Z., Wan, H., Wan, Y., Zheng, S., & Zhu, D. (2011b). Effective catalytic reduction of cr (VI) over TiO2 nanotube supported pd catalysts. Applied Catalysis B: Environmental, 105(3), 255–262.CrossRefGoogle Scholar
  12. Chen, X., Liu, L., Peter, Y. Y., & Mao, S. S. (2011a). Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331, 746–750.CrossRefGoogle Scholar
  13. Chiang, K., Amal, R., & Tran, T. (2002). Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Advances in Environmental Research, 6(4), 471–485.CrossRefGoogle Scholar
  14. Choi, W., Termin, A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 98(51), 13669–13679.CrossRefGoogle Scholar
  15. Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53–65.CrossRefGoogle Scholar
  16. Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P.L., Wofsy, S.C., & Zhang, X. (2007) Couplings between changes in the Climate System and Biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, & H.L. Miller (Eds.), Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY: Cambridge University Press.Google Scholar
  17. Dolat, D., Quici, N., Kusiak-Nejman, E., Morawski, A., & Puma, G. L. (2012). One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, C TiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Applied Catalysis B: Environmental, 115, 81–89.CrossRefGoogle Scholar
  18. Du, P., Bueno-Lopez, A., Verbaas, M., Almeida, A., Makkee, M., Moulijn, J., & Mul, G. (2008). The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. Journal of Catalysis, 260(1), 75–80.CrossRefGoogle Scholar
  19. Dulon, S., Parot, S., Delia, M. L., & Bergel, A. (2007). Electroactive biofilms: new means for electrochemistry. Journal of Applied Electrochemistry, 37, 173–179.CrossRefGoogle Scholar
  20. El-Sheikh, S. M., Zhang, G., El-Hosainy, H. M., Ismail, A. A., O'Shea, K. E., Falaras, P., Kontos, A. G., & Dionysiou, D. D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. Journal of Hazardous Materials, 280, 723–733.CrossRefGoogle Scholar
  21. Etacheri, V., Michlits, G., Seery, M. K., Hinder, S. J., & Pillai, S. C. (2013). A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Applied Materials & Interfaces, 5(5), 1663–1672.CrossRefGoogle Scholar
  22. Ettedgui, J., Diskin-Posner, Y., Weiner, L., & Neumann, R. (2010). Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium (I) phenanthroline–polyoxometalate hybrid complex. Journal of the American Chemical Society, 133(2), 188–190.CrossRefGoogle Scholar
  23. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37–38.CrossRefGoogle Scholar
  24. Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1–21.CrossRefGoogle Scholar
  25. Grills, D. C., & Fujita, E. (2010). New directions for the photocatalytic reduction of CO2: supramolecular, scCO2 or biphasic ionic liquid–scCO2 systems. The Journal of Physical Chemistry Letters, 1(18), 2709–2718.CrossRefGoogle Scholar
  26. Guo, X., Mao, D., Lu, G., Wang, S., & Wu, G. (2011). The influence of la doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. Journal of Molecular Catalysis A: Chemical, 345(1), 60–68.CrossRefGoogle Scholar
  27. Heede, R. (2014). Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. Climatic Change, 122(1–2), 229–241.CrossRefGoogle Scholar
  28. Hirano, K., Inoue, K., & Yatsu, T. (1992). Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. Journal of Photochemistry and Photobiology A: Chemistry, 64(2), 255–258.CrossRefGoogle Scholar
  29. Hoertz, P. G., & Mallouk, T. E. (2005). Light-to-chemical energy conversion in lamellar solids and thin films. Inorganic Chemistry, 44(20), 6828–6840.CrossRefGoogle Scholar
  30. Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2(7), 745–758.CrossRefGoogle Scholar
  31. Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637–638.CrossRefGoogle Scholar
  32. Kakumoto, T. (1995). A theoretical study for the CO2 hydrogenation mechanism on Cu/ZnO catalyst. Energy Conversion and Management, 36(6), 661–664.CrossRefGoogle Scholar
  33. Kalathil, S., Khan, M. M., Ansari, S. A., Lee, J., & Cho, M. H. (2013). Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale, 5, 6323–6326.CrossRefGoogle Scholar
  34. Katuri, K. P., Kalathil, S., Ragab, A. A., Bian, B., Alqahtani, M. F., Pant, D., & Saikaly, P. E. (2018). Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems. Advanced Materials, 1707072.Google Scholar
  35. Kavil, Y. N., Shaban, Y. A., Al Farawati, R. K., Orif, M. I., Zobidi, M., & Khan, S. U. (2017). Photocatalytic conversion of CO2 into methanol over Cu-C/TiO2 nanoparticles under UV light and natural sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 347, 244–253.CrossRefGoogle Scholar
  36. Khan, S. U., Al-Shahry, M., & Ingler Jr., W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2. Science (New York, N.Y.), 297(5590), 2243–2245.CrossRefGoogle Scholar
  37. Kim, J. H., Ma, X., Zhou, A., & Song, C. (2006). Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catalysis Today, 111(1), 74–83.CrossRefGoogle Scholar
  38. Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89(3), 494–502.CrossRefGoogle Scholar
  39. Koike, K., Naito, S., Sato, S., Tamaki, Y., & Ishitani, O. (2009). Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: III: effects of length of alkyl chain connecting photosensitizer to catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 207(1), 109–114.CrossRefGoogle Scholar
  40. Kubelka, P. (1948). New contributions to the optics of intensely light-scattering materials. part I. JOSA, 38(5), 448–457.CrossRefGoogle Scholar
  41. Lee, Y., Kim, S., Venkateswaran, P., Jang, J., Kim, H., & Kim, J. (2008). Anion co-doped titania for solar photocatalytic degradation of dyes. Carbon Letters, 9(2), 131–136.CrossRefGoogle Scholar
  42. Lei, X. F., Xue, X. X., Yang, H., Chen, C., Li, X., Niu, M. C., Gao, X. Y., & Yang, Y. T. (2015). Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials. Applied Surface Science, 332, 172–180.CrossRefGoogle Scholar
  43. Lo, C., Hung, C., Yuan, C., & Wu, J. (2007). Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells, 91(19), 1765–1774.CrossRefGoogle Scholar
  44. Mallouk, T. E. (2010). The emerging technology of solar fuels. Journal of Physical Chemistry Letters, 1(18), 2738–2739.Google Scholar
  45. Mizuno, T., Adachi, K., Ohta, K., & Saji, A. (1996). Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 98(1–2), 87–90.CrossRefGoogle Scholar
  46. Montzka, S. A., Dlugokencky, E. J., & Butler, J. H. (2011). Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43–50.CrossRefGoogle Scholar
  47. Nakano, Y., Morikawa, T., Ohwaki, T., & Taga, Y. (2005). Electrical characterization of band gap states in C-doped TiO2 films. Applied Physics Letters, 87(5), 052111.CrossRefGoogle Scholar
  48. Nasution, H. W., Purnama, E., Kosela, S., & Gunlazuardi, J. (2005). Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Catalysis Communications, 6(5), 313–319.CrossRefGoogle Scholar
  49. Ohtani, B. (2010). Photocatalysis A to Z—what we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178.CrossRefGoogle Scholar
  50. Olah, G.A., Prakash, G.S. (2010). Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. 7,704,369.Google Scholar
  51. Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., LeQuéré, C., Scholes, R. J., & Wallace, D. W. (2001). The carbon cycle and atmospheric carbon dioxide. Cambridge University Press.Google Scholar
  52. Ramanathan, V., & Feng, Y. (2009). Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmospheric Environment, 43(1), 37–50.CrossRefGoogle Scholar
  53. Randorn, C., Wongnawa, S., & Boonsin, P. (2004). Bleaching of methylene blue by hydrated titanium dioxide. Scienceasia, 30, 149–156.CrossRefGoogle Scholar
  54. Roy, S. C., Varghese, O. K., Paulose, M., & Grimes, C. A. (2010). Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 4(3), 1259–1278.CrossRefGoogle Scholar
  55. Sasirekha, N., Basha, S. J. S., & Shanthi, K. (2006). Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B: Environmental, 62(1), 169–180.CrossRefGoogle Scholar
  56. Shaban, Y. A., & Khan, S. U. (2008). Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water. International Journal of Hydrogen Energy, 33(4), 1118–1126.CrossRefGoogle Scholar
  57. Shaban, Y. A., El Sayed, M. A., El Maradny, A. A., Al Farawati, R. K., Al Zobidi, M. I., & Khan, S. U. (2016). Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles. Applied Surface Science, 365, 108–113.CrossRefGoogle Scholar
  58. Shaban, Y. A., El Sayed, M. A., El Maradny, A. A., Al Farawati, R. K., & Al Zobidi, M. I. (2013). Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations. Chemosphere, 91(3), 307–313.CrossRefGoogle Scholar
  59. Shiraishi, Y., & Hirai, T. (2008). Selective organic transformations on titanium oxide-based photocatalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 157–170.CrossRefGoogle Scholar
  60. Slamet, H. W. N., Purnama, E., Riyani, K., & Gunlazuardi, J. (2009). Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts. World Applied Sciences Journal, 6(1), 112–122.Google Scholar
  61. Tahir, M., & Amin, N. S. (2015). Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Applied Catalysis B: Environmental, 162, 98–109.CrossRefGoogle Scholar
  62. Takeda, H., & Ishitani, O. (2010). Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coordination Chemistry Reviews, 254(3), 346–354.CrossRefGoogle Scholar
  63. Tao, Y., Xu, Y., Pan, J., Gu, H., Qin, C., & Zhou, P. (2012). Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis. Materials Science and Engineering: B, 177(18), 1664–1671.CrossRefGoogle Scholar
  64. Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15(2), 627–637.CrossRefGoogle Scholar
  65. Trevisan, V., Olivo, A., Pinna, F., Signoretto, M., Vindigni, F., Cerrato, G., & Bianchi, C. (2014). CN/TiO2 photocatalysts: effect of co-doping on the catalytic performance under visible light. Applied Catalysis B: Environmental, 160, 152–160.CrossRefGoogle Scholar
  66. Tseng, I., Chang, W., & Wu, J. C. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37(1), 37–48.CrossRefGoogle Scholar
  67. Uddin, M. R., Khan, M. R., Rahman, M. W., Yousuf, A., & Cheng, C. K. (2015). Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation. Reaction Kinetics, Mechanisms and Catalysis, 116(2), 589–604.CrossRefGoogle Scholar
  68. Umebayashi, T., Yamaki, T., Itoh, H., & Asai, K. (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81(3), 454–456.CrossRefGoogle Scholar
  69. Wang, C., Thompson, R. L., Baltrus, J., & Matranga, C. (2009). Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. The Journal of Physical Chemistry Letters, 1(1), 48–53.CrossRefGoogle Scholar
  70. Wang, L., Liu, Q., Chen, M., Liu, Y., Cao, Y., He, H., & Fan, K. (2007). Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-co-precipitation technique. The Journal of Physical Chemistry C, 111(44), 16549–16557.CrossRefGoogle Scholar
  71. Wu, J. C. (2009). Photocatalytic reduction of greenhouse gas CO2 to fuel. Catalysis Surveys from Asia, 13(1), 30–40.CrossRefGoogle Scholar
  72. Wu, Y., Liu, H., Zhang, J., & Chen, F. (2009). Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. The Journal of Physical Chemistry C, 113(33), 14689–14695.CrossRefGoogle Scholar
  73. Xu, C., Killmeyer, R., Gray, M. L., & Khan, S. U. (2006). Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination. Applied Catalysis B: Environmental, 64(3), 312–317.CrossRefGoogle Scholar
  74. Xu, C., Shaban, Y. A., Ingler, W. B., & Khan, S. U. (2007). Nanotube enhanced photo response of carbon modified (CM)-n-TiO2 for efficient water splitting. Solar Energy Materials and Solar Cells, 91(10), 938–943.CrossRefGoogle Scholar
  75. Yamashita, H., Fujii, Y., Ichihashi, Y., Zhang, S. G., Ikeue, K., Park, D. R., Koyano, K., Tatsumi, T., & Anpo, M. (1998). Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45(1), 221–227.CrossRefGoogle Scholar
  76. Yamashita, H., Nishiguchi, H., Kamada, N., Anpo, M., Teraoka, Y., Hatano, H., Ehara, S., Kikui, K., Palmisano, L., Sclafani, A., & Schiavello, M. (1994). Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates, 20(8), 815–823.CrossRefGoogle Scholar
  77. Yang, H., Lin, H., Chien, Y., Wu, J. C., & Wu, H. (2009). Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catalysis Letters, 131(3–4), 381–387.CrossRefGoogle Scholar
  78. Yu, J., Zhang, L., Cheng, B., & Su, Y. (2007). Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. The Journal of Physical Chemistry C, 111(28), 10582–10589.CrossRefGoogle Scholar
  79. Zhan, Y., Zhang, Y., Li, Q., & Du, X. (2010). A novel visible spectrophotometric method for the determination of methanol using sodium nitro-prusside as spectroscopic probe. Journal of the Chinese Chemical Society, 57(2), 230–235.CrossRefGoogle Scholar
  80. Zhang, G., Zhang, Y. C., Nadagouda, M., Han, C., O'Shea, K., El-Sheikh, S. M., Ismail, A. A., & Dionysiou, D. D. (2014). Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental, 144, 614–621.CrossRefGoogle Scholar
  81. Zhang, Z., Huang, Z., Cheng, X., Wang, Q., Chen, Y., Dong, P., & Zhang, X. (2015). Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Applied Surface Science, 355, 45–51.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yasar N. Kavil
    • 1
  • Yasser A. Shaban
    • 1
    • 2
  • Radwan Kh. Al Farawati
    • 1
  • Mohamed I. Orif
    • 1
  • Mousa Zobidi
    • 1
  • Shahed U. M. Khan
    • 3
  1. 1.Marine Chemistry Department, Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.National Institute of Oceanography and FisheriesQayet BayEgypt
  3. 3.Department of Chemistry and BiochemistryDuquesne UniversityPittsburghUSA

Personalised recommendations