Advertisement

Evaluation of the Effective Inactivation of Enteric Bacteria and Viruses From Swine Effluent and Sludge at Tropical Temperatures

  • Gislaine Fongaro
  • Airton Kunz
  • Maria Elisa Magri
  • Aline Viancelli
  • Camila Daminelli Schissi
  • Maria Célia da Silva Lanna
  • Marta Hernández
  • David Rodríguez-Lázaro
  • María Cruz García-González
  • Célia Regina Monte Barardi
Article
  • 78 Downloads

Abstract

The safe recycling of organic wastes such as the nutrients obtained from agriculture activities is a relevant aspect of the “One Health” strategy, a worldwide initiative including all aspects of health care for humans and animals, as well as aspects related to the conservation and development of the environment. It represents an important opportunity to mitigate the potential impact of microbial pathogens likely present in nutrient natural sources, as digestate, when applied to land as fertilizers. The objectives of the current study were to determine the inactivation of enteric microorganisms in swine digestate (effluent and sludge) during storage in anaerobic conditions and at different ambient temperatures of tropical zones (16, 22, and 37 °C). Human adenovirus 2 (HAdV-2), bacteriophage PhiX-174, and Salmonella enterica serovar typhimurium (S. typhimurium) were used as enteric microbial models to determine the minimum storage time required to reduce at least 3log of enteric microorganisms load in both matrices at the mentioned temperatures. The minimum storage time required for S. typhimurium was shorter than those observed for viruses at 37 °C, while reduction of at least 3log for S. typhimurium was observed after just 1 day; 20 and 90 days were needed for similar reductions for HAdV-2 and PhiX-174, respectively. Similar results were also observed at lower temperatures: 30 and 45 days were needed for S. typhimurium at 22 and 16 °C, respectively, but 30 and 90 days were needed at 22 °C for HAdV-2 PhiX-174, respectively, or 90 and 120 days at 16 °C for HAdV-2 PhiX-174, respectively. This is a pioneering study on the evaluation of inactivation of enteric viruses in swine digestate in usual tropical ambient temperatures; it demonstrates that the time for a considerable inactivation is longer than that observed for a enteric microorganisms (S. typhimurium), and shows that the storage of swine digestate at the referred temperatures can be used as a low-cost post-treatment to inactivate enteric microorganisms, allowing a further use as safer fertilizer.

Keywords

Swine manure Digestate One health Microorganism inactivation Fertilizer 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Financial Support

Financial support was provided by CNPq, CAPES-PNPD, CAPES-PDSE, and Eletrosul Centrais Elétricas S.A.

References

  1. Bertrand, I., Schijven, J. F., Sánchez, G., Wyn-Jones, P., Ottoson, J., Morin, T., Muscillo, M., Verani, M., Nasser, A., De Rosa Husman, A. M., Myrmel, M., Sellwood, J., Cook, N., & Gantzer, C. (2012). The impact of the temperature on the inactivation of enteric viruses in food and water: A review. Journal of Applied Microbiology, 112(6), 1059–1074.CrossRefGoogle Scholar
  2. Bosshard, C., Sørensen, P., Frossard, E., Dubois, D., Mäder, P., Nanzer, S., & Oberson, A. (2009). Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems. Nutrient Cycling in Agroecosystems, 83, 271–287.CrossRefGoogle Scholar
  3. Boudaud, N., Machinal, C., David, F., Fréval-Le Bourdonnec, A., Jossent, J., Bakanga, F., Arnal, C., Jaffrezic, M. P., Oberti, S., & Gantzer, C. (2012). Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Water Research, 46(8), 2651–2664.CrossRefGoogle Scholar
  4. BRAZIL. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. Normative Instrution N° 25/2009: Official methods for fertilizer evaluation and production.Google Scholar
  5. Burton, C.H., Turner, C. 2003. Manure management: treatment strategies for sustainable agriculture. Silsoe Research Institute. 2nd ed. Wrest Park, Silsoe, Bedford, UK.Google Scholar
  6. Castro, L., Escalante, H., Jaimes-Estévez, J., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317.CrossRefGoogle Scholar
  7. De Motes, C. M. P., Clemente-Casares, A., Hundesa, M. M., & Girones, R. (2004). Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination. Applied and Environmental Microbiology, 70, 1448–1454.CrossRefGoogle Scholar
  8. Dika, C., Duval, J. F., Ly-Chatain, H. M., Merlin, C., & Gantzer, C. (2011). Impact of internal RNA on aggregation and electrokinetics of viruses: Comparison between MS2 phage and corresponding virus-like particles. Applied and Environmental Microbiology, 77(14), 4939–4948.CrossRefGoogle Scholar
  9. EC, 2011. REGULATION (EC) No 142/2011 COMMISSION REGULATION (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive.Google Scholar
  10. Emmoth, E., Ottoson, J., Albihn, A., Belák, S., & Vinnerås, B. (2011). Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses. Applied and Environmental Microbiology., 77, 3960–3966.CrossRefGoogle Scholar
  11. Fishbein, L. (2004). Multiple sources of dietary calcium - some aspects of its essentiality. Regulatory Toxicology and Pharmacology, 39, 67–80. New York.Google Scholar
  12. Fongaro, G., Nascimento, M. A., Rigotto, C., Ritterbusch, G., Da Silva, A. D., Esteves, P. A., & Barardi, C. R. M. (2013). Evaluation and molecular characterization of human adenovirus in drinking water supplies: Viral integrity and viability assays. Virology Journal, 10, 166.CrossRefGoogle Scholar
  13. Fongaro, G., Viancelli, A., Magri, M. E., Elmahdy, M. E., Biesus, L., Kich, J. D., Kunz, A., & Barardi, C. R. M. (2014). Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes. Science of the Total Environment, 479-480, 227–283.CrossRefGoogle Scholar
  14. Food and Agriculture Organization of the Inited Nations (FAO). The state of food and agriculture—innovation in family farming, p, 161, 2014.Google Scholar
  15. García-González, M. C., Vanotti, M. B., Szogi, A. A. (2016). Recovery of ammonia from anaerobically digested manure using gas-permeable membranes. Scientia Agricola, 73(5), 434–438.Google Scholar
  16. Griffith, R.W., Schwartz, K.J., Meyerholz, D.K. Salmonella. In: Diseases of Swine, 9th Ed., Eds: Straw, BE, Zimmerman JJ, D’Allaire S, Taylor DJ, Blackwell Publishing, 2006. p. 739–751.Google Scholar
  17. Hernroth, B. E., Conden-Hansson, A. C., Rehnstan-Holm, A. S., Girones, R., & Allard, A. K. (2002). Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, mytilus edulis: The first Scandinavian report. Applied and Environmental Microbiology, 68, 4523–4533.CrossRefGoogle Scholar
  18. Hundesa, A., De Motes, M., Albinana-Gimenez, N. C., Rodriguez-Manzano, J., Bofill-Mas, S., Suñen, E., & Girones, R. (2009). Development of a qPCR assay for the quantification of porcine adenoviruses as na MST tool for swine fecal contamination in the environment. Journal Virology Methods, 72, 7886–7893.Google Scholar
  19. International Organization For Standardization, ISO 10715–2:2000., 2000. Water Quality – Detection and enumeration of bacteriophages.Google Scholar
  20. Kim, S. J., Si, J., Lee, J. E., & Ko, G. P. (2012). Temperature and humidity influences on inactivation kinetics of enteric viruses on surfaces. Environmental Science and Technologies., 46, 13303–13310.CrossRefGoogle Scholar
  21. Ko, G., Cromeans, T. L., & Sobsey, M. D. (2003). Detection of infectious adenovirus in cell culture by mRNA reverse transcription-PCR. Applied and Environmental Microbiology, 69, 7377–7384.CrossRefGoogle Scholar
  22. Kunz, A., Miele, M., & Steinmetz, R. L. (2009). Advanced swine manure treatment and utilization in Brazil. Bioresource Technology, 100, 5485–5489.CrossRefGoogle Scholar
  23. Love, D., & Sobsey, M. (2007). Simple and rapid F+coliphage culture, latex agglutination and typing assay to detect and source track fecal contamination. Applied and Environmental Microbiology, 73, 4110–4118.CrossRefGoogle Scholar
  24. Magri, M. E., Philippi, L. S., & Vinnerås, B. (2013). Inactivation of pathogens in feces by desiccation and urea treatment for application in urine-diverting dry toilets. Applied and Environmental Microbiology, 79(7), 2156–2163.CrossRefGoogle Scholar
  25. Magri, M. E., Fidjeland, J., Jönsson, H., Albihn, A., & Vinnerås, B. (2015). Inactivation of adenovirus, reovirus and bacteriophages in fecal sludge by pH and ammonia. Science of Total Environment, 520, 213–221.CrossRefGoogle Scholar
  26. Nguyen-Viet, H., Pham-Duc, P., Nguyen, V., Tanner, M., Odermatt, P., Vu-Van, T., et al. (2015). A one health perspective for integrated human and animal sanitation and nutrient recycling. In J. Zinsstag, E. Schelling, D. Waltner-Toews, M. Whittaker, & M. Tanner (Eds.), One health. The theory and practice of integrated health approaches (pp. 96–107). Boston: Cabi.Google Scholar
  27. Peng, X., Murphy, T., & Holden, N. M. (2008). Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Applied and Environmental Microbiology, 74, 7101–7107.CrossRefGoogle Scholar
  28. Reinoso, A., & Becares, E. (2008). Environmental inactivation of Cryptosporidium parvum oocysts in waste stabilization ponds. Microbial Ecology, 56, 585–592.CrossRefGoogle Scholar
  29. Topp, E., Scott, A., Lapen, D. R., Lyautey, E., & Duriez, P. (2009). Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: Some considerations. Bioresource Technology, 100(22), 5395–5398.CrossRefGoogle Scholar
  30. Venglovsky, J., Martinez, J., & Placha, I. (2006). Hygienic and ecological risks connected with utilization of animal manures and biosolids in agriculture. Livestock Science, 102, 197–203.CrossRefGoogle Scholar
  31. Viancelli, A., Kunz, A., Steinmetz, R. L. R., Kich, J. D., Souza, C. K., Canal, C. W., Coldebella, A., Esteves, P. A., & Barardi, C. R. M. (2013). Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens. Chemos., 90(4), 1539–1544.CrossRefGoogle Scholar
  32. Wiesmann, U., Choi, I. S., Dombrowski, E. M. (2007). Fundamentals of biological wastewater treatment. Weinheim: Willey-VCH Verlag GmbH & Co.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gislaine Fongaro
    • 1
    • 2
  • Airton Kunz
    • 3
  • Maria Elisa Magri
    • 1
  • Aline Viancelli
    • 2
  • Camila Daminelli Schissi
    • 1
  • Maria Célia da Silva Lanna
    • 4
  • Marta Hernández
    • 5
    • 6
  • David Rodríguez-Lázaro
    • 6
  • María Cruz García-González
    • 5
  • Célia Regina Monte Barardi
    • 1
  1. 1.Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e ParasitologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Complexo de Desenvolvimento CientíficoUniversidade do ContestadoConcórdiaBrazil
  3. 3.Embrapa Suínos e Aves, Concórdia, Brazil and PGEAGRI/CCET – UNIOESTECascavelBrazil
  4. 4.Laboratório de Microbiologia e Bioprospecção TecnológicaUniversidade Federal de Ouro PretoOuro PretoBrazil
  5. 5.Instituto Tecnológico Agrario de Castilla y LeónValladolidSpain
  6. 6.Microbiology Section, Department of Biotechnology and Food ScienceUniversidad de BurgosBurgosSpain

Personalised recommendations