Metal Uptake from Complex Industrial Effluent by Cyanobacteria Arthrospira platensis

  • Inga ZinicovscaiaEmail author
  • Liliana Cepoi
  • Igor Povar
  • Tatiana Chiriac
  • Elena Rodlovskaya
  • Otilia Ana Culicov


The time-dependent uptake of metal ions (Al, Cr, Fe, Zn, Sr, and Ba) by cyanobacterium Arthrospira platensis from the complex industrial effluents of an engineering company (electroplating units of the Tactical Missiles Corporation, Dubna, Russia) was investigated. The preference of spirulina biomass for metal ions was observed as follows: Ba >Fe > Sr > Al > Zn > Cr. According to neutron activation analysis data, the degree of metal retention increased rapidly in the first 5–15 min of the reaction but remained the same or slightly decreased after this period. The efficiency of metal removal varied from 37% for chromium to 100% for barium. The thermodynamic analysis of wastewater chemical composition was performed in order to determine the speciation of heavy metals. Ion exchange, precipitation, and metal ion interaction with functional groups of the cyanobacteria cell wall were defined as the main mechanisms of metal ion removal.


Biosorption Metals Neutron activation analysis FT-IR spectroscopy Arthrospira platensis 



The authors would like to thank M. Rusu for IR-spectra measurement.


  1. Ahuja, P., Gupta, R., & Saxena, R. K. (1999). Zn2+ biosorption by Oscillatoria angustissima. Process Biochemistry, 34(1), 77–85.CrossRefGoogle Scholar
  2. Aneja, R. K., Chaudhary, G., Ahluwalia, S. S., & Goyal, D. (2010). Biosorption of Pb2+ and Zn2+ by non living biomass of Spirulina sp. Indian Journal of Microbiology, 50(4), 438–442.CrossRefGoogle Scholar
  3. Anonymous (2003). Decision of the chief sanitary officer of the Russian Federation ГН, April 30, 2003 № 78 (in Russian).Google Scholar
  4. Anonymous (2011). Guidelines for drinking-water quality. World Health Organization, 4th edition.Google Scholar
  5. Anonymous (2012) Patent RU2012107743A, Method for biosorption purification of water from heavy metal ions using. Saccharomyces cerevisiae yeast, 2012.Google Scholar
  6. Ball, J. & Nordstrom, D. (2001). User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. Menlo Park, California. Revised and reprinted April 2001.Google Scholar
  7. Bosi, F., Belardi, G., & Ballirano, P. (2009). Structural features in Tutton’s salts K2[M2+(H2O)6](SO4)2, with M2+= Mg, Fe, Co, Ni, Cu, and Zn. American Mineralogist, 94(1), 74–82.CrossRefGoogle Scholar
  8. Butler, J., & Cogley, D. (1998). Ionic equilibrium: solubility and pH calculations. New York: John Wiley and Sons.Google Scholar
  9. Campanella, L., Crescentini, G., & Avino, P. (1999). Chemical composition and nutritional evaluation of some natural and commercial food products based on Spirulina. Analusis, 27, 533–540.CrossRefGoogle Scholar
  10. Celekli, A., Yavuzatmaca, M., & Bozkurt, H. (2010). An eco-friendly process: predictive modelling of copper adsorption from aqueous solution on Spirulina platensis. Journal of Hazardous Materials, 173(1), 23–129.Google Scholar
  11. Chakravarty, R., & Banerjee, P. C. (2008). Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles, 12(2), 279–284.CrossRefGoogle Scholar
  12. Chan, S. S., Chow, H., & Wong, M. H. (1991). Microalgae as bioabsorbents for treating mixture of electroplating and sewage effluent. Biomedical and Environmental Sciences, 4(3), 250–261.Google Scholar
  13. Chen, H., & Pan, S. S. (2005). Bioremediation potential of spirulina: toxicity and biosorption studies of lead. Journal of Zhejiang University Science B, 6(3), 171–174.CrossRefGoogle Scholar
  14. Chojnacka, K. (2010). Biosorption and bioaccumulation—the prospects for practical applications. Environment International, 36, 299–307.CrossRefGoogle Scholar
  15. Esposito, A., Pagnanelli, F., & Veglio, F. (2002). pH-related equilibria models for biosorption in single metal systems. Chemical Engineering Science, 57(3), 307–313.CrossRefGoogle Scholar
  16. Filipovic-Kovaevic, Z., Sipos, L., & Briski, F. (2000). Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger from aqueous solutions. Food Technology and Biotechnology, 38(3), 211–216.Google Scholar
  17. Frontasyeva, M. V. (2011). Neutron activation analysis in the life sciences. A review. PEPAN, 42(2), 332–378.Google Scholar
  18. Gagrai, M. K., Das, C., & Golder, A. K. (2013). Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies. Chemosphere, 93(7), 1366–1371.CrossRefGoogle Scholar
  19. Georgiev, M., Bancheva, T., Marinova, D., Stoyanova, R., & Stoilova, D. (2016) On the formation of solid solutions with Blödite- and Kröhnkite-type structures. I. Synthesis, vibrational and EPR spectroscopic investigations of Na2Zn1-xCux(SO4)2·4H2O (0 < x < 0.14). International Journal of Scientific and Technology Research, 2, 279–292.Google Scholar
  20. Kang, S., Lee, U., & Kim, K. W. (2005). Metal removal from wastewater by bacterial sorption: kinetics and competition studies. Environmental Technology, 26(6), 615–624.CrossRefGoogle Scholar
  21. Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends in Biotechnology, 16(7), 291–300.CrossRefGoogle Scholar
  22. Marschner, H. (1995). Mineral nutrition in higher plants. San Diego: Academic Press.Google Scholar
  23. Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the art for the biosorption process—a review. Applied Biochemistry and Biotechnology, 170(6), 1389–1416.CrossRefGoogle Scholar
  24. Mori, M., Hironaga, T., Itabashi, H., et al. (2012). Simultaneous determination of NH4 +, NO2 (−) and NO3 (−) by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent. Se Pu, 30(4), 356–360.Google Scholar
  25. Netzahuatl-Muñoz, A. R., Cristiani-Urbina, M. C., & Cristiani-Urbina, E. (2015). Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One, 10(9), e0137086.CrossRefGoogle Scholar
  26. Parameswari, E., Lakshmanan, A., & Thilagavathi, T. (2009). Effect of pretreatment of blue green algal biomass on bioadsorption of chromium and nickel. Journal of Algal Biomass Utilization, 1(1), 9–17.Google Scholar
  27. Pavlov, S. S., Dmitriev, A. Y., & Frontasyeva, M. V. (2016). Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of neutron physics, Joint Institute for Nuclear Research, Dubna, Russia. Journal of Radioanalytical and Nuclear Chemistry, 309, 27–38.CrossRefGoogle Scholar
  28. Permyakov, E., & Kretsinger, R. H. (2011). Calcium Binding Proteins. Singapore: John Wiley & Sons.Google Scholar
  29. Povar, I., & Rusu, V. (2012). Aluminium heterogeneous speciation in natural waters. Canadian Journal of Chemistry, 90, 326–332.CrossRefGoogle Scholar
  30. Povar, I., & Spinu, O. (2014). The role of hydroxy aluminium sulphate minerals in controlling Al3+ concentration and speciation in acidic soils. Central European Journal of Chemistry, 12, 877–885.CrossRefGoogle Scholar
  31. Povar, I., & Spinu, O. (2015). Correlation between global thermodynamic functions and experimental data in multicomponent heterogeneous systems. Canadian Journal of Chemistry, 94, 1–7.Google Scholar
  32. Reid, J. R., Tester, M. A., & Smith, F. A. (1995). Calcium/aluminium interactions in the cell wall and plasma membrane of Chara. Planta, 195(3), 362–368.CrossRefGoogle Scholar
  33. Rezaei, H. (2016). Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry, 9, 846–853.CrossRefGoogle Scholar
  34. Rodrigues, M. S., Ferreira, L. S., de Carvalho, J. C., Lodi, A., Finocchio, E., & Converti, A. (2012). Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. Journal of Hazardous Materials, 217–218, 246–255.CrossRefGoogle Scholar
  35. Rudic, V., Gudumac, V., Bulimaga, V., et al. (2002). The methods of investigation in phytobiotechnology. Chisinau: CE USM (in Romanian).Google Scholar
  36. Saeid, A., Chojnacka, K., Korczyński, M., Korniewicz, D., & Dobrzański, Z. (2013). Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. Journal of Applied Phycology, 25(2), 667–675.CrossRefGoogle Scholar
  37. Spinu, O., & Povar, I. (2016). Distribution of Aluminium soluble and insoluble species in the system “Basaluminite-soil solution”. Revue Roumaine de Chimie, 6, 250–254.Google Scholar
  38. Voigt, W. (2011). Chemistry of salts in aqueous solutions: applications, experiments, and theory. Pure and Applied Chemistry, 83(5), 1015–1030.CrossRefGoogle Scholar
  39. Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427–451.CrossRefGoogle Scholar
  40. Warren, L. A., & Ferris, F. G. (1998). Continuum between sorption and precipitation of Fe (III) on microbial surfaces. Environmental Science and Technology, 32(15), 2331–2337.CrossRefGoogle Scholar
  41. Zinicovscaia, I., Duca, G., Rudic, V., et al. (2013). Spirulina platensis as biosorbent of zinc in water. Journal of Environmental Management, 2(5), 1079–1084.CrossRefGoogle Scholar
  42. Zinicovscaia, I., Duca, G., Cepoi, L., et al. (2015). Biotechnology of metal removal from industrial wastewater: zinc case study. Clean-Soil, Air, Water, 43(1), 112–117.CrossRefGoogle Scholar
  43. Zinicovscaia, I., Cepoi, L., Chiriac, T., et al. (2016). Spirulina platensis as biosorbent of chromium and nickel from wastewaters. Desalination and Water Treatment, 57(24), 11103–11110.CrossRefGoogle Scholar
  44. Zinicovscaia, I., Safonov, A., Tregubova, V., et al. (2017). Bioaccumulation and biosorption of some selected metals by bacteria Pseudomonas putida from single- and multi-component systems. Desalination and Water Treatment, 74.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Horia Hulubei National Institute for R&D in Physics and Nuclear EngineeringBucharest-MagureleRomania
  3. 3.The Institute of Chemistry of the Academy of Sciences of MoldovaChisinauRepublic of Moldova
  4. 4.Institute of Microbiology and Biotechnology of the Academy of Science of MoldovaChisinauRepublic of Moldova
  5. 5.A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia
  6. 6.National R&D Institute for Electrical Engineering ICPE-CABucharestRomania

Personalised recommendations