Advertisement

Release of Carbon in Different Molecule Size Fractions from Decomposing Boreal Mor and Peat as Affected by Enchytraeid Worms

  • Mari Lappalainen
  • Marjo Palviainen
  • Jussi V.K. Kukkonen
  • Heikki Setälä
  • Sirpa Piirainen
  • Tytti Sarjala
  • Harri Koivusalo
  • Leena Finér
  • Samuli Launiainen
  • Ari Laurén
Article
  • 28 Downloads

Abstract

Terrestrial export of dissolved organic carbon (DOC) to watercourses has increased in boreal zone. Effect of decomposing material and soil food webs on the release rate and quality of DOC are poorly known. We quantified carbon (C) release in CO2, and DOC in different molecular weights from the most common organic soils in boreal zone; and explored the effect of soil type and enchytraeid worms on the release rates. Two types of mor and four types of peat were incubated in laboratory with and without enchytraeid worms for 154 days at + 15 °C. Carbon was mostly released as CO2; DOC contributed to 2–9% of C release. The share of DOC was higher in peat than in mor. The release rate of CO2 was three times higher in mor than in highly decomposed peat. Enchytraeids enhanced the release of CO2 by 31–43% and of DOC by 46–77% in mor. High molecular weight fraction dominated the DOC release. Upscaling the laboratory results into catchment level allowed us to conclude that peatlands are the main source of DOC, low molecular weight DOC originates close to watercourse, and that enchytraeids substantially influence DOC leaching to watercourse and ultimately to aquatic CO2 emissions.

Keywords

Carbon dioxide Dissolved organic carbon Enchytraeids Organic matter Peat Mor 

Notes

Acknowledgements

The authors would like to thank the laboratory staff of the Natural Resources Institute Finland and the University of Eastern Finland. We also wish to acknowledge Metsähallitus for making the site available for studying. Funding was provided by the Academy of Finland (projects 121991 and 214545) and the finalizing was carried out with funding from the Academy of Finland to strengthen university research profiles in Finland for the years 2017-2021 (funding decision 311925).

References

  1. Abrahamsen, G. (1972). Ecological study of Enchytraeidae (Oligochaeta) in Norwegian coniferous forest soils. Pedobiologia, 12, 26–82.Google Scholar
  2. Ahtiainen, M., & Huttunen, P. (1999). Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environment Research, 4, 101–114.Google Scholar
  3. Bardgett, R. D., & Chan, K. F. (1999). Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biology and Biochemistry, 31, 1007–1014.CrossRefGoogle Scholar
  4. Briones, M. J., Ineson, P., & Poskitt, J. (1998). Climate change and Cognettia sphagnetorum: effects on carbon dynamics in organic soils. Functional Ecology, 12, 528–535.CrossRefGoogle Scholar
  5. Briones, M. J., Ostle, N. J., & Garnett, M. H. (2007). Invertebrates increase the sensitivity of non-labile soil carbon to climate change. Soil Biology and Biochemistry, 39, 816–818.CrossRefGoogle Scholar
  6. Cajander, A. K. (1949). Forest types and their significance. Acta Forestalia Fennica, 56, 1–72.Google Scholar
  7. Chertov, O. G., Komarov, A. S., Nadporozhskaya, M., Bykhovets, S. S., & Zudin, S. L. (2001). ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modelling. Ecological Modelling, 138, 289–308.CrossRefGoogle Scholar
  8. Cole, L., Bradgett, R. D., & Ineson, P. (2000). Enchytraeid worms (Oligochaeta) enhance mineralization of carbon in organic upland soil. European Journal of Soil Science, 51, 185–192.CrossRefGoogle Scholar
  9. Cole, L., Bardgett, R. D., Ineson, P., & Hobbs, P. J. (2002). Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subjected to warming. Soil Biology and Biochemistry, 34, 83–92.CrossRefGoogle Scholar
  10. Didden, W. A. M. (1993). Ecology of terrestrial Enchytraeidae. Pedobiologia, 37, 2–29.Google Scholar
  11. Finér, L., Ahtiainen, M., Mannerkoski, H., Möttönen, V., Piirainen, S., Seuna, P., et al. (1997). Effects of harvesting and scarification on water and nutrient fluxes. A description of catchment and methods, and results from the pretreatment calibration period. Finnish Forest Research Institute, Research Papers 648.Google Scholar
  12. Finnish Statistical Yearbook of Forestry. (2014). In A. Peltola (Ed.), Agriculture, forestry and fishery, official statistics of Finland. Tampere: Finnish Forest Research Institute, Tammerprint Oy.Google Scholar
  13. Fox, O., Vetter, S., Ekschmitt, K., & Wolters, V. (2006). Soil fauna modifies the recalcitrance-persistence relationship of soil carbon pools. Soil Biology and Biochemistry, 38, 1353–1363.CrossRefGoogle Scholar
  14. Goldstein, H. (1995). Multilevel statistical models. Kendall’s library of statistics 3 (2nd ed.). London: Edward Arnold.Google Scholar
  15. Hagedorn, F., & Machwitz, M. (2007). Controls on dissolved organic matter leaching from forest litter grown under elevated atmospheric CO2. Soil Biology & Biochemistry, 39, 1759–1769.CrossRefGoogle Scholar
  16. Hansson, K., Berggren Kleja, D., Kalbitz, K., & Larsson, H. (2010). Amounts of carbon mineralized and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biology & Biochemistry, 42, 178–185.CrossRefGoogle Scholar
  17. Hedlund, K., & Augustsson, A. (1995). Effects of enchytraeids grazing on fungal growth and respiration. Soil Biology & Biochemistry, 27, 905–909.CrossRefGoogle Scholar
  18. Huhta, V., Persson, T., & Setälä, H. (1998). Functional implications of soil fauna diversity in boreal forests. Applied Soil Ecology, 10, 277–288.CrossRefGoogle Scholar
  19. Huotari, J., Ojala, A., Peltomaa, E., Nordbo, A., Launiainen, S., Pumpanen, J., et al. (2011). Long–term direct CO2 flux measurements over a boreal lake: five years of eddy covariance data. Geophysical Research Letters, 38, L18401.  https://doi.org/10.1029/2011GL048753.CrossRefGoogle Scholar
  20. Johnson, L. C., & Damman, A. W. H. (1993). Decay and its regulation in Sphagnum peatlands. Advances in Bryology, 5, 249–296.Google Scholar
  21. Jonsson, A., Meili, M., Bergström, A.-K., & Jansson, M. (2001). Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnology and Oceanography, 46, 1691–1700.CrossRefGoogle Scholar
  22. Kalbitz, K., Schmerwitz, J., Schwesig, D., & Matzner, E. (2003a). Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 113, 273–291.CrossRefGoogle Scholar
  23. Kalbitz, K., Schwesig, D., Schmerwitz, J., Kaiser, K., Haumaier, L., Glaser, B., et al. (2003b). Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biology & Biochemistry, 35, 1129–1142.CrossRefGoogle Scholar
  24. Kiikkilä, O., Kitunen, V., & Smolander, A. (2006). Dissolved soil organic matter from surface horizons under birch and conifers: Degradation in relation to chemical characteristics. Soil Biology & Biochemistry, 38, 737–746.CrossRefGoogle Scholar
  25. Kiikkilä, O., Kanerva, S., Kitunen, V., & Smolander, A. (2014). Soil microbial activity in relation to dissolved organic matter properties under different tree species. Plant and Soil, 377, 169–177.CrossRefGoogle Scholar
  26. Kilpeläinen, J., Vestberg, M., Repo, T., & Lehto, T. (2016). Arbuscular and ectomycorrhizal root colonisation and plant nutrition in soils exposed to freezing temperatures. Soil Biology and Biochemistry, 99, 85–93.CrossRefGoogle Scholar
  27. Koivusalo, H., Ahti, E., Laurén, A., Kokkonen, T., Karvonen, T., Nevalainen, R., et al. (2008). Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrology and Earth System Sciences, 12(5), 1211–1227.CrossRefGoogle Scholar
  28. Korkalainen, T., Laurén, A., & Kokkonen, T. (2007). A GIS-based analysis of catchment properties within a drumlin field. Boreal Environment Research, 12, 289–500.Google Scholar
  29. Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S., & Sallantaus, T. (2006). Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences, 68, 453–468.CrossRefGoogle Scholar
  30. Kothawala, D. N., Moore, T. R., & Hendershot, W. H. (2008). Adsorption of dissolved organic carbon to mineral soil: a comparison of four adsorption isotherm approaches. Geoderma, 148, 43–50.CrossRefGoogle Scholar
  31. Laakso, J., & Setälä, H. (1999). Sensitivity of primary production to changes in the architecture of belowground foodwebs. Oikos, 87, 57–64.CrossRefGoogle Scholar
  32. Laine-Kaulio, H. (2011). Development and analysis of a dual-permeability model for subsurface stromflow and solute transport in a forested hillslope. Aalto University publication series. Doctoral Dissertations 71.Google Scholar
  33. Laine-Kaulio, H., Koivusalo, H., Komarov, A. S., Lappalainen, M., Launiainen, S., & Laurén, A. (2014). Extending the ROMUL model to simulate the dynamics of dissolved and sorbed C and N compounds in decomposing boreal mor. Ecological Modelling, 272, 277–292.CrossRefGoogle Scholar
  34. Laurén, A., Lappalainen, M., Saari, P., Kukkonen, J. V. K., Koivusalo, H., Piirainen, S., et al. (2012). Nitrogen and carbon dynamics and the role of Enchytraeid worms in decomposition of L, F and H layers of boreal mor. Water, Air, and Soil Pollution, 223, 3701–3719.CrossRefGoogle Scholar
  35. Lehto, T., Brosinsky, A., Heinonen-Tanski, H., & Repo, T. (2008). Freezing tolerance of ectomycorrhizal fungi in pure culture. Mycorrhiza, 18, 385–392.CrossRefGoogle Scholar
  36. Lindén, A., Heinonsalo, J., Buchmann, N., Oinonen, M., Sonninen, E., Hilasvuori, E., et al. (2014). Contrasting effects of increased carbon input on boreal SOM decomposition with and without presence of living root system of Pinus sylvestris L. Plant and Soil, 377, 145–158.CrossRefGoogle Scholar
  37. Liu, X.-J. A., Sun, J., Mau, R. L., Finley, B. K., Compson, Z. G., van Gestel, N., Brown, J. R., Schwarttz, E., Dijkstra, P., & Hungate, B. A. (2017). Labile carbon input determines the direction and magnitude of the priming effect. Applied Soil Ecology, 109, 7–13.CrossRefGoogle Scholar
  38. Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology & Biochemistry, 41, 1355–1379.CrossRefGoogle Scholar
  39. Marschner, B., & Kalbitz, K. (2003). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113, 211–235.CrossRefGoogle Scholar
  40. Martikainen, P. J., & Palojärvi, A. (1990). Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils. Soil Biology & Biochemistry, 22(6), 797–802.CrossRefGoogle Scholar
  41. Mastný, J., Kaštovská, E., Bárta, J., Chronáková, A., Borovec, J., Šantrucková, H., Urbanová, Z., Edwards, K. R., & Picek, T. (2018). Quality of DOC produced during litter decomposition of peatland plant dominants. Soil Biology and Biochemistry, 121, 221–230.CrossRefGoogle Scholar
  42. Moore, T. R., Paré, D., & Boutin, R. (2008). Production of dissolved organic carbon in Canadian forest soils. Ecosystems, 11, 740–751.CrossRefGoogle Scholar
  43. Müller, M., Alewell, C., & Hagedorn, F. (2009). Effective retention of litter-derived dissolved organic carbon in organic layers. Soil Biology & Biochemistry, 41, 1066–1074.CrossRefGoogle Scholar
  44. Neff, J. C., & Asner, G. P. (2001). Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems, 4, 29–48.CrossRefGoogle Scholar
  45. Nurminen, M. (1967). Ecology of enchytraeids (Oligochaeta) in Finnish coniferous forest soil. Annales Zoologici Fennici, 4, 147–157.Google Scholar
  46. O’Connor, F. B. (1962). The extraction of Enchytraeidae from soil. In P. W. Murphy (Ed.), Progress in soil zoology (pp. 279–285). London: Butterworth.Google Scholar
  47. Ojanen, P. Minkkinen, K., Alm, J. & Penttilä, T. (2010). Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands Forest Ecology and Management 260, 411–421.Google Scholar
  48. Palviainen, M., Finér, L., Kurka, A.-M., Mannerkoski, H., Piirainen, S., & Starr, M. (2004). Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant and Soil, 263, 53–67.CrossRefGoogle Scholar
  49. Palviainen, M., Laurén, A., Launiainen, S., & Piirainen, S. (2016). Predicting the export and concentrations of organic carbon, nitrogen and phosphorus in boreal lakes by catchment characteristics and land use: a practical approach. Ambio, 45(8), 933–945.CrossRefGoogle Scholar
  50. Park, J. H., Kalbitz, K., & Matzner, E. (2002). Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Biology & Biochemistry, 34, 813–822.CrossRefGoogle Scholar
  51. Pirinen, P., Simola, H., Aalto, J., Kaukoranta, J.-P., Karlsson, P. & Ruuhela, R. (2012). Climatological statistics of Finland 1981–2010. Finnish meteorological Institute.Reports 2012:1. Helsinki.Google Scholar
  52. Popatov, A. M., & Tiunov, A. V. (2016). Stabile isotope composition of mycophagous collembolas versus mycotrophic plants: do soil invertebrates feed on mycorrhizal fungi? Soil Biology and Biochemistry, 93, 115–118.CrossRefGoogle Scholar
  53. Porcal, P., Koprivnjak, J.-F., Molot, L. A., & Dillon, P. J. (2009). Humic substances—part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Environmental Science and Pollution Research, 16, 714–726.CrossRefGoogle Scholar
  54. Prescott, C. E. (2010). Litter decomposition: what controls it and how we can alter it to sequester more carbon in forest soils? Biogeochemistry, 101, 133–149.CrossRefGoogle Scholar
  55. Räty, M., & Huhta, V. (2004). Communities of Enchytraeidae (Oligochaeta) in planted birch stands as compared with natural forests in central Finland. Biology and Fertility of Soils, 40, 413–420.CrossRefGoogle Scholar
  56. Sarkkola, S., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., Palviainen, M., et al. (2009). Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Science of the Total Environment, 408, 92–101.CrossRefGoogle Scholar
  57. Setälä, H., Haimi, J., & Huhta, V. (1988). A microcosm study on the respiration and weight loss in birch litter and raw humus as influenced by soil fauna. Biology and Fertility of Soils, 5, 282–287.CrossRefGoogle Scholar
  58. Silvan, N., Laiho, R., & Vasander, H. (2000). Changes in mesofauna abundance in peat soils drained for forestry. Forest Ecology and Management, 133, 127–133.CrossRefGoogle Scholar
  59. Sparling, G. P., Feltham, C. W., Reynolds, J., West, A. W., & Singleton, P. (1990). Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kEC-factor. Soil Biology & Biochemistry, 22(3), 301–307.CrossRefGoogle Scholar
  60. Tfaily, M. M., Hadman, R., Corbett, J. E., Chanton, J. P., Glaser, P. H., & Cooper, W. T. (2013). Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytica techniques. Geochimica et Cosmologica Acta, 112, 116–129.CrossRefGoogle Scholar
  61. Tomppo, E. (2000). Kasvupaikat ja puusto. In A. Reinikainen, R. Mäkipää, I. Vanha-Majamaa, & J.-P. Hotanen (Eds.), Kasvit muuttuvassa metsäluonnossa (pp. 60–83). Helsinki: Tammi.Google Scholar
  62. van Hees, P. A. W., Jones, D. L., Finlay, R., Godbold, D. L., & Lundström, U. S. (2005). The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biology & Biochemistry, 37, 1–13.CrossRefGoogle Scholar
  63. Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19(6), 703–707.CrossRefGoogle Scholar
  64. Venäläinen, A., Tuomenvirta, H., Heikinheimo, M., Kellomäki, S., Peltola, H., Strandman, H., & Väisanen, H. (2001). Impact of climate change on soil frost under snow cover in a forested landscape. Climate Research, 17, 63–72.CrossRefGoogle Scholar
  65. Virtanen, K., Hänninen, P., Kallinen, R.-L., Vartiainen, S., Herranen, T. & Jokisaari, R. (2003). Suomen turvevarat 2000. Summary: the peat reserves of Finland in 2000. Geological Survey of Finland, Report of Investigation 156.Google Scholar
  66. von Post, L. (1922). Sveriges geologiska undersöknings torvinventering och några av dess hittills vunna resultat. Svenska Mosskulturföreningens Tidskrift, 37, 1–27.Google Scholar
  67. Yano, Y., McDowell, W. H., & Aber, J. D. (2000). Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition. Soil Biology & Biochemistry, 32, 1743–1751.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mari Lappalainen
    • 1
  • Marjo Palviainen
    • 2
  • Jussi V.K. Kukkonen
    • 3
  • Heikki Setälä
    • 4
  • Sirpa Piirainen
    • 5
  • Tytti Sarjala
    • 5
  • Harri Koivusalo
    • 6
  • Leena Finér
    • 5
  • Samuli Launiainen
    • 5
  • Ari Laurén
    • 1
  1. 1.Faculty of Science and ForestryUniversity of Eastern FinlandJoensuuFinland
  2. 2.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
  4. 4.Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research programmeUniversity of HelsinkiLahtiFinland
  5. 5.Natural Resources Institute FinlandHelsinkiFinland
  6. 6.School of Engineering, Department of Built EnvironmentAalto UniversityAaltoFinland

Personalised recommendations